# IQC Note for April 16

#### Yuantian Ding

#### April, 2024

## **1** Pauli Group $G_1$

To reduce Pauli stabilizer codes to classical representation, we are interested in the commutation of Pauli operators. Here we use  $[g, h] = ghg^{-1}h^{-1}$  to denote the commutator in group-theoretic sense. So, the commutator of Pauli operators are,

$$\begin{split} [X,Y] &= XYX^{-1}Y^{-1} = XYXY = -I\\ [X,Z] &= [Y,Z] = -I \end{split}$$

Using this notion of commutator, Pauli group  $G_1$  of one qubit  $G_1 = \{\pm I, \pm iI, \pm X, \pm iX, \pm Y, \pm iY, \pm Z, \pm iZ\}$  can be decomposed into two subgroups:

- The center (i.e. the subset of elements that commute with every other element) of  $G_1$ ,  $C(G_1) = \{\pm I, \pm iI\}$ . This subgroup is isomorphic to  $\mathbb{Z}/4\mathbb{Z}$ .
- The quotient group  $G_1/\{\pm 1, \pm i\}$ . This subgroup is isomorphic to  $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ .

In the following sections, we use  $\mathbb{F}_2$  to denote  $\mathbb{Z}/2\mathbb{Z}$  for convenience.

### 2 Reduce Pauli Group $G_n$ to Symplectic Vector Space

We already have a good idea about  $G_1$ . Now we will use symplectic vector space to investigate  $G_n$ . First, let's define a notation that encode a sequence of Pauli operators as a vector of  $\mathbb{F}_2$ ,

$$X(\vec{x}) = \prod_{i=1}^{n} X_{i}^{\vec{x}(i)} \text{ for any } \vec{x} \in \mathbb{F}_{2}^{n}$$
$$Z(\vec{z}) = \prod_{i=1}^{n} Z_{i}^{\vec{z}(i)} \text{ for any } \vec{z} \in \mathbb{F}_{2}^{n}$$

For example,  $X(1,0,1) = X \otimes I \otimes X$ . Using this notation,  $G_n$  can be written as,

$$G_n = \left\{ \eta X(\vec{x}) Z(\vec{z}) \, \big| \, \vec{x}, \vec{z} \in \mathbb{F}_2^n, \eta \in \{\pm 1, \pm i\} \right\}$$

Here are some simple observations of  $X(\vec{x})$  and  $Z(\vec{z})$ .

$$\begin{aligned} X(\vec{x})^{-1} &= X(\vec{x}) & Z(\vec{x})^{-1} &= Z(\vec{x}) \\ X(\vec{x}_1)X(\vec{x}_2) &= X(\vec{x}_1 + \vec{x}_2) & Z(\vec{x}_1)Z(\vec{x}_2) &= Z(\vec{x}_1 + \vec{x}_2) \end{aligned}$$

$$\begin{aligned} Z(\vec{z})X(\vec{x}) &= \left(\prod_{i=1}^n Z_i^{\vec{z}(i)}\right) \left(\prod_{i=1}^n X_i^{\vec{x}(i)}\right) \\ &= Z^{\vec{z}(1)}X^{\vec{x}(1)} \otimes \cdots \otimes Z^{\vec{z}(n)}X^{\vec{x}(n)} \\ &= (-1)^{\vec{z}(1)\vec{x}(1)}X^{\vec{x}(1)}Z^{\vec{z}(1)} \otimes \cdots \otimes (-1)^{\vec{z}(n)\vec{x}(n)}X^{\vec{x}(n)}Z^{\vec{z}(n)} \\ &= (-1)^{\vec{z}\cdot\vec{x}}(X^{\vec{x}(1)}Z^{\vec{z}(1)} \otimes \cdots \otimes X^{\vec{x}(n)}Z^{\vec{z}(n)}) \\ &= (-1)^{\vec{z}\cdot\vec{x}}X(\vec{x})Z(\vec{z}) \end{aligned}$$
(1)

Then we define symplectic product as a operator on symplectic vector space  $\mathbb{F}_2^n \oplus \mathbb{F}_2^n$ .

**Definition 1** (Symplectic Product on  $\mathbb{F}_2^n \oplus \mathbb{F}_2^n$ ). Symplectic product is an operator  $\omega$  takes two  $\mathbb{F}_2^n \oplus \mathbb{F}_2^n$  and returns a single  $F_2$ , which

$$\begin{split} \omega : \quad \left( \mathbb{F}_2^n \oplus \mathbb{F}_2^n \right) \times \mathbb{F}_2^n \oplus \mathbb{F}_2^n & \mapsto \quad \mathbb{F}_2 \\ \left( \left( \vec{x}_1, \vec{z}_1 \right), \left( \vec{x}_2, \vec{z}_2 \right) \right) & \mapsto \quad \vec{x}_1 \cdot \vec{z}_2 + \vec{x}_2 \cdot \vec{z}_1 \end{split}$$

Now we are ready to introduce a homomorphism from Pauli group  $G_n$  to symplectic vector space  $\mathbb{F}_2^n \oplus \mathbb{F}_2^n$ .

Lemma 1 (Homomorphism from Pauli Group to  $\mathbb{F}_2^n \oplus \mathbb{F}_2^n$ ). There exists a surjective group homomorphism  $\pi$ , that maps elements in Pauli group  $G_n$  to  $\mathbb{F}_2^n \oplus \mathbb{F}_2^n$ 

$$\begin{array}{rcccc} \pi: & G_n & \mapsto & \mathbb{F}_2^n \oplus \mathbb{F}_2^n \\ & \eta X(\vec{x}) Z(\vec{x}) & \mapsto & (\vec{x}, \vec{z}) \end{array}$$

*Proof.* Once we multiply two elements in  $G_n$ , we have,

$$\begin{aligned} & \eta_1 X(\vec{x}_1) Z(\vec{z}_1) \eta_2 X(\vec{x}_2) Z(\vec{z}_2) \\ &= & \eta_1 \eta_2 X(\vec{x}_1) Z(\vec{z}_1) X(\vec{x}_2) Z(\vec{z}_2) \\ &= & \eta_1 \eta_2 (-1)^{\vec{z}_1 \cdot \vec{x}_2} X(\vec{x}_1) X(\vec{x}_2) Z(\vec{z}_1) Z(\vec{z}_2) \\ &= & \eta_1 \eta_2 (-1)^{\vec{z}_1 \cdot \vec{x}_2} X(\vec{x}_1 + \vec{x}_2) Z(\vec{z}_1 + \vec{z}_2) \end{aligned}$$

Thus,  $\pi(\eta_1 X(\vec{x}_1) Z(\vec{z}_1) \ \eta_2 X(\vec{x}_2) Z(\vec{z}_2)) = \pi(\eta_1 X(\vec{x}_1) Z(\vec{z}_1)) + \pi(\eta_2 X(\vec{x}_2) Z(\vec{z}_2)).$ 

**Lemma 2.**  $\eta_1 X(\vec{x}_1) Z(\vec{z}_1)$  and  $\eta_2 X(\vec{x}_2) Z(\vec{z}_2)$  commute iff  $\omega((\vec{x}_1, \vec{z}_1), (\vec{x}_2, \vec{z}_2)) = 0$ .

*Proof.* Using (1) to exchange X and Z,

$$\begin{aligned} &\eta_1 X(\vec{x}_1) Z(\vec{z}_1) \eta_2 X(\vec{x}_2) Z(\vec{z}_2) \\ &= &\eta_1 \eta_2 X(\vec{x}_1) Z(\vec{z}_1) X(\vec{x}_2) Z(\vec{z}_2) \\ &= &\eta_1 \eta_2 (-1)^{\vec{z}_1 \cdot \vec{x}_2} X(\vec{x}_1) X(\vec{x}_2) Z(\vec{z}_1) Z(\vec{z}_2) \\ &= &\eta_1 \eta_2 (-1)^{\vec{z}_1 \cdot \vec{x}_2} X(\vec{x}_2) X(\vec{x}_1) Z(\vec{z}_2) Z(\vec{z}_1) \\ &= &\eta_1 \eta_2 (-1)^{\vec{z}_1 \cdot \vec{x}_2} (-1)^{\vec{x}_1 \cdot \vec{z}_2} X(\vec{x}_2) Z(\vec{z}_2) X(\vec{x}_1) Z(\vec{z}_1) \\ &= &(-1)^{\omega((\vec{x}_1, \vec{z}_1), (\vec{x}_2, \vec{z}_2))} \eta_2 X(\vec{x}_2) Z(\vec{z}_2) \eta_1 X(\vec{x}_1) Z(\vec{z}_1) \end{aligned}$$

Thus

$$\left[\eta_1 X(\vec{x}_1) Z(\vec{z}_1), \eta_2 X(\vec{x}_2) Z(\vec{z}_2)\right] = (-1)^{\omega((\vec{x}_1, \vec{z}_1), (\vec{x}_2, \vec{z}_2))} I$$

Then  $\eta_1 X(\vec{x}_1) Z(\vec{z}_1)$  and  $\eta_2 X(\vec{x}_2) Z(\vec{z}_2)$  commute if and only if  $\omega((\vec{x}_1, \vec{z}_1), (\vec{x}_2, \vec{z}_2)) = 0.$ 

### 3 Subspaces generated by Pauli Stabilizer

Now we discuss subspaces generated by a set of Pauli stabilizer:  $S \subseteq G_n$ .

**Lemma 3.** If  $\langle S \rangle$  generates a nonabelian group, then  $-I \in \langle S \rangle$ .

*Proof.* On one hand, if  $\langle S \rangle$  is nonabelian, exists  $g, h \in \langle S \rangle$  such that,  $[g, h] \neq I$ . On the other hand, as we know from Lemma 2,  $[g, h] = \pm I$ . Thus we get [g, h] = -I. And because  $[g, h] \in \langle S \rangle$ , we know  $-I \in \langle S \rangle$ .

**Lemma 4.** If  $\langle S \rangle$  generates an abelian group and  $-I \notin \langle S \rangle$ , then for any  $g \in \langle S \rangle$ ,  $g^2 = I$ , and in particular,  $\eta(g) = \pm 1$  where  $g = \eta(g)X(\vec{x}_g)Z(\vec{z}_g)$ .

*Proof.* If  $\langle S \rangle$  is abelian, then,  $g^2 = \eta(g)^2 X(2\vec{x}_g) Z(2\vec{z}_g) = \eta(g)^2$ . And because  $-I \notin \langle S \rangle$ ,  $g^2 \neq -I$ , which means  $\eta(g) \neq \pm i$ . Then  $\eta(g) = \pm 1$ .

Before discussing  $C_S$ , the vector space stabilized by S, we have to define notation of sympletic complement for sympletic vector space.

**Definition 2** (Sympletic Complement). Let  $W \subseteq \mathbb{F}_2^n \oplus \mathbb{F}_2^n$ , the sympletic complement of W is defined by,

$$W^{\perp} = \left\{ (\vec{x}, \vec{z}) \in \mathbb{F}_2^n \oplus \mathbb{F}_2^n \mid \omega\big( (\vec{x}, \vec{z}), (\vec{w}_1, \vec{w}_2) \big) = 0, \text{for any } (\vec{w}_1, \vec{w}_2) \in W \right\}$$

We also say W is isotropic iff  $W \subseteq W^{\perp}$ .

**Example 1.** Let  $W = \{(\vec{x}, 0) | \vec{x} \in \mathbb{F}_2\} \subseteq \mathbb{F}_2^n \oplus \mathbb{F}_2^n$ . It's easy to show that  $W = W^{\perp}$ .

- $W \subseteq W^{\perp}$ : Obviously,  $\omega((\vec{x}_1, 0), (\vec{x}_2, 0)) = 0$ .
- $W^{\perp} \subseteq W$ : If for any  $w \in \mathbb{F}_2$ ,  $\omega((\vec{w}, 0), (\vec{x}, \vec{z})) = 0$ , then  $\vec{z} = 0$ .

ω

**Lemma 5.** If  $\langle S \rangle$  is abelian, then  $\pi(\langle S \rangle)$  is an isotropic subspace. And  $\pi : \langle S \rangle \mapsto \mathbb{F}_2^n \oplus \mathbb{F}_2^n$  is injective iff  $-I \notin \langle S \rangle$ .

Lemma 5 means we can always map any abelian subspace of  $G_n$  that not containing -I to an isotropic subspace of  $\mathbb{F}_2^n \oplus \mathbb{F}_2^n$ . This map is also bijection but it will be hard to prove that.

**Definition 3** (Symplectomorphism). An isomorphism  $\alpha : \mathbb{F}_2^n \oplus \mathbb{F}_2^n \to \mathbb{F}_2^n \oplus \mathbb{F}_2^n$  is a symplectomorphism, if for any  $(\vec{x}_1, \vec{z}_1), (\vec{x}_2, \vec{z}_2) \in \mathbb{F}_2^n \oplus \mathbb{F}_2^n$ ,

$$(\alpha(\vec{x}_1, \vec{z}_1), \alpha(\vec{x}_2, \vec{z}_2)) = \omega((\vec{x}_1, \vec{z}_1), (\vec{x}_2, \vec{z}_2))$$

**Definition 4** (Clifford Unitary). Any unitary  $U : (\mathbb{C}^2)^{\otimes n} \mapsto (\mathbb{C}^2)^{\otimes n}$  is called *Clifford*, if for any  $g \in G_n$ ,

$$UgU^* \in G_n$$

Here we list some key facts about isotropic subspace and symplectomorphism.

- 1. Isotropic subspace of  $\mathbb{F}_2^n \oplus \mathbb{F}_2^n$  have dimension at most n.
- 2. Any two isotropic subspace of the same dimension are equal up to symplectomorphism.
- 3. Any symplectomorphism can be implemented by a Clifford operator U, i.e.  $\pi(UgU^*) = \alpha(\pi(g))$ .

**Proposition 1.**  $C_S = \{\vec{0}\} \Leftrightarrow -I \in \langle S \rangle.$ 

*Proof.* ( $\Leftarrow$ ) This direction we have proved last time.

(⇒) For any clifford U we have  $U(-I)U^* = -I$  and  $UC_S = C_{USU^*}$ . So in particular, it suffice to find a clifford U for which we can show  $-I \notin \langle USU^* \rangle$ .

By Fact 3, it suffices to find a symplectomorphism  $\alpha$ , such that  $\alpha(\pi(\langle S \rangle)) = \pi(\langle S' \rangle)$  where  $-I \notin \langle S' \rangle$ . By Fact 1 and 2, we know that  $\dim \pi(\langle S \rangle) = k \leq n$ .

And by Fact 2, we can use symplectomorphism  $\alpha$  that maps  $\pi(\langle S \rangle)$  to the following isotropic subspaces.

$$\left\{ (x_1, x_2, \dots, x_k, \underbrace{0, \dots, 0}_{n-k}, \underbrace{0, \dots, 0}_{n}) \mid x_1, x_2, \dots, x_k \in \mathbb{F}_2 \right\} \subseteq \mathbb{F}_2^n \oplus \mathbb{F}_2^n$$

This is exactly  $\pi(\langle S' \rangle)$  where,

$$S' = \{ X(x_1, x_2, \dots, x_k, 0, \dots, 0) \mid x_1, x_2, \dots, x_k \in \mathbb{F}_2 \} \subseteq G_n$$

which means  $-I \notin \langle S' \rangle$ .

With a little more work we can prove,

**Proposition 2.** There exists a bijection: {subgroups  $\langle S \rangle \in G_n$  that are abelian and don't contain -1}  $\longleftrightarrow$  {isotropic subgroup of  $\mathbb{F}_2^n \oplus \mathbb{F}_2^n$ }

**Theorem 1.** There exists a bijection: {Pauli stabilizer codes }  $\longleftrightarrow$  { isotropic subgroup of  $\mathbb{F}_2^n \oplus \mathbb{F}_2^n$  }