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1 Pauli Group G1

To reduce Pauli stabilizer codes to classical representation, we are interested in the commutation of Pauli oper-
ators. Here we use [g, h] = ghg−1h−1 to denote the commutator in group-theoretic sense. So, the commutator
of Pauli operators are,

[X,Y ] = XYX−1Y −1 = XYXY = −I
[X,Z] = [Y,Z] = −I

Using this notion of commutator, Pauli group G1 of one qubit G1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}
can be decomposed into two subgroups:

• The center (i.e. the subset of elements that commute with every other element) of G1, C(G1) = {±I,±iI}.
This subgroup is isomorphic to Z/4Z.

• The quotient group G1/{±1,±i}. This subgroup is isomorphic to Z/2Z⊕ Z/2Z.

In the following sections, we use F2 to denote Z/2Z for convenience.

2 Reduce Pauli Group Gn to Symplectic Vector Space

We already have a good idea about G1. Now we will use symplectic vector space to investigate Gn. First, let’s
define a notation that encode a sequence of Pauli operators as a vector of F2,

X(x⃗) =

n∏
i=1

X
x⃗(i)
i for any x⃗ ∈ Fn

2

Z(z⃗) =

n∏
i=1

Z
z⃗(i)
i for any z⃗ ∈ Fn

2

For example, X(1, 0, 1) = X ⊗ I ⊗X. Using this notation, Gn can be written as,

Gn =
{
ηX(x⃗)Z(z⃗)

∣∣ x⃗, z⃗ ∈ Fn
2 , η ∈ {±1,±i}

}
Here are some simple observations of X(x⃗) and Z(z⃗).

X(x⃗)−1 = X(x⃗) Z(x⃗)−1 = Z(x⃗)
X(x⃗1)X(x⃗2) = X(x⃗1 + x⃗2) Z(x⃗1)Z(x⃗2) = Z(x⃗1 + x⃗2)

Z(z⃗)X(x⃗) =
( n∏

i=1

Z
z⃗(i)
i

)( n∏
i=1

X
x⃗(i)
i

)
= Z z⃗(1)X x⃗(1) ⊗ · · · ⊗ Z z⃗(n)X x⃗(n)

= (−1)z⃗(1)x⃗(1)X x⃗(1)Z z⃗(1) ⊗ · · · ⊗ (−1)z⃗(n)x⃗(n)X x⃗(n)Z z⃗(n)

= (−1)z⃗·x⃗(X x⃗(1)Z z⃗(1) ⊗ · · · ⊗X x⃗(n)Z z⃗(n))
= (−1)z⃗·x⃗X(x⃗)Z(z⃗)

(1)

Then we define symplectic product as a operator on symplectic vector space Fn
2 ⊕ Fn

2 .

Definition 1 (Symplectic Product on Fn
2 ⊕ Fn

2 ). Symplectic product is an operator ω takes two Fn
2 ⊕ Fn

2 and
returns a single F2, which

ω : (Fn
2 ⊕ Fn

2 )× Fn
2 ⊕ Fn

2 7→ F2(
(x⃗1, z⃗1), (x⃗2, z⃗2)

)
7→ x⃗1 · z⃗2 + x⃗2 · z⃗1

Now we are ready to introduce a homomorphism from Pauli group Gn to symplectic vector space Fn
2 ⊕ Fn

2 .
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Lemma 1 (Homomorphism from Pauli Group to Fn
2 ⊕ Fn

2 ). There exists a surjective group homomorphism π,
that maps elements in Pauli group Gn to Fn

2 ⊕ Fn
2

π : Gn 7→ Fn
2 ⊕ Fn

2

ηX(x⃗)Z(x⃗) 7→ (x⃗, z⃗)

Proof. Once we multiply two elements in Gn, we have,

η1X(x⃗1)Z(z⃗1)η2X(x⃗2)Z(z⃗2)
= η1η2X(x⃗1)Z(z⃗1)X(x⃗2)Z(z⃗2)
= η1η2(−1)z⃗1·x⃗2X(x⃗1)X(x⃗2)Z(z⃗1)Z(z⃗2)
= η1η2(−1)z⃗1·x⃗2X(x⃗1 + x⃗2)Z(z⃗1 + z⃗2)

Thus, π(η1X(x⃗1)Z(z⃗1) η2X(x⃗2)Z(z⃗2)) = π(η1X(x⃗1)Z(z⃗1)) + π(η2X(x⃗2)Z(z⃗2)).

Lemma 2. η1X(x⃗1)Z(z⃗1) and η2X(x⃗2)Z(z⃗2) commute iff ω
(
(x⃗1, z⃗1), (x⃗2, z⃗2)

)
= 0.

Proof. Using (1) to exchange X and Z,

η1X(x⃗1)Z(z⃗1)η2X(x⃗2)Z(z⃗2)
= η1η2X(x⃗1)Z(z⃗1)X(x⃗2)Z(z⃗2)
= η1η2(−1)z⃗1·x⃗2X(x⃗1)X(x⃗2)Z(z⃗1)Z(z⃗2)
= η1η2(−1)z⃗1·x⃗2X(x⃗2)X(x⃗1)Z(z⃗2)Z(z⃗1)
= η1η2(−1)z⃗1·x⃗2(−1)x⃗1·z⃗2X(x⃗2)Z(z⃗2)X(x⃗1)Z(z⃗1)
= (−1)ω((x⃗1,z⃗1),(x⃗2,z⃗2))η2X(x⃗2)Z(z⃗2)η1X(x⃗1)Z(z⃗1)

Thus [
η1X(x⃗1)Z(z⃗1), η2X(x⃗2)Z(z⃗2)

]
= (−1)ω((x⃗1,z⃗1),(x⃗2,z⃗2))I

Then η1X(x⃗1)Z(z⃗1) and η2X(x⃗2)Z(z⃗2) commute if and only if ω
(
(x⃗1, z⃗1), (x⃗2, z⃗2)

)
= 0.

3 Subspaces generated by Pauli Stabilizer

Now we discuss subspaces generated by a set of Pauli stabilizer: S ⊆ Gn.

Lemma 3. If ⟨S⟩ generates a nonabelian group, then −I ∈ ⟨S⟩.

Proof. On one hand, if ⟨S⟩ is nonabelian, exists g, h ∈ ⟨S⟩ such that, [g, h] ̸= I. On the other hand, as we know
from Lemma 2, [g, h] = ±I. Thus we get [g, h] = −I. And because [g, h] ∈ ⟨S⟩, we know −I ∈ ⟨S⟩.

Lemma 4. If ⟨S⟩ generates an abelian group and −I /∈ ⟨S⟩, then for any g ∈ ⟨S⟩, g2 = I, and in particular,
η(g) = ±1 where g = η(g)X(x⃗g)Z(z⃗g).

Proof. If ⟨S⟩ is abelian, then, g2 = η(g)2X(2x⃗g)Z(2z⃗g) = η(g)2. And because −I /∈ ⟨S⟩, g2 ̸= −I, which means
η(g) ̸= ±i. Then η(g) = ±1.

Before discussing CS , the vector space stabilized by S, we have to define notation of sympletic complement
for sympletic vector space.

Definition 2 (Sympletic Complement). Let W ⊆ Fn
2 ⊕ Fn

2 , the sympletic complement of W is defined by,

W⊥ =
{
(x⃗, z⃗) ∈ Fn

2 ⊕ Fn
2

∣∣∣ ω((x⃗, z⃗), (w⃗1, w⃗2)
)
= 0, for any (w⃗1, w⃗2) ∈W

}
We also say W is isotropic iff W ⊆W⊥.

Example 1. Let W = {(x⃗, 0)|x⃗ ∈ F2} ⊆ Fn
2 ⊕ Fn

2 . It’s easy to show that W = W⊥.

• W ⊆W⊥: Obviously, ω((x⃗1, 0), (x⃗2, 0)) = 0.

• W⊥ ⊆W : If for any w ∈ F2, ω((w⃗, 0), (x⃗, z⃗)) = 0, then z⃗ = 0.

Lemma 5. If ⟨S⟩ is abelian, then π(⟨S⟩) is an isotropic subspace. And π : ⟨S⟩ 7→ Fn
2 ⊕ Fn

2 is injective iff
−I /∈ ⟨S⟩.

Lemma 5 means we can always map any abelian subspace of Gn that not containing −I to an isotropic
subspace of Fn

2 ⊕ Fn
2 . This map is also bijection but it will be hard to prove that.

Definition 3 (Symplectomorphism). An isomorphism α : Fn
2 ⊕ Fn

2 7→ Fn
2 ⊕ Fn

2 is a symplectomorphism, if for
any (x⃗1, z⃗1), (x⃗2, z⃗2) ∈ Fn

2 ⊕ Fn
2 ,

ω(α(x⃗1, z⃗1), α(x⃗2, z⃗2)) = ω((x⃗1, z⃗1), (x⃗2, z⃗2))
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Definition 4 (Clifford Unitary). Any unitary U : (C2)⊗n 7→ (C2)⊗n is called Clifford, if for any g ∈ Gn,

UgU∗ ∈ Gn

Here we list some key facts about isotropic subspace and symplectomorphism.

1. Isotropic subspace of Fn
2 ⊕ Fn

2 have dimension at most n.

2. Any two isotropic subspace of the same dimension are equal up to symplectomorphism.

3. Any symplectomorphism can be implemented by a Clifford operator U , i.e. π(UgU∗) = α(π(g)).

Proposition 1. CS = {⃗0} ⇔ −I ∈ ⟨S⟩.

Proof. (⇐) This direction we have proved last time.

(⇒) For any clifford U we have U(−I)U∗ = −I and UCS = CUSU∗ . So in particular, it suffice to find a clifford
U for which we can show −I /∈ ⟨USU∗⟩.

By Fact 3, it suffices to find a symplectomorphism α, such that α
(
π
(
⟨S⟩

))
= π

(
⟨S′⟩

)
where −I /∈ ⟨S′⟩.

By Fact 1 and 2, we know that dimπ
(
⟨S⟩

)
= k ≤ n.

And by Fact 2, we can use symplectomorphism α that maps π
(
⟨S⟩

)
to the following isotropic subspaces.{

(x1, x2, . . . , xk, 0, . . . , 0,︸ ︷︷ ︸
n−k

0, . . . , 0︸ ︷︷ ︸
n

)
∣∣ x1, x2, . . . , xk ∈ F2

}
⊆ Fn

2 ⊕ Fn
2

This is exactly π
(
⟨S′⟩

)
where,

S′ =
{
X(x1, x2, . . . , xk, 0, . . . , 0)

∣∣ x1, x2, . . . , xk ∈ F2

}
⊆ Gn

which means −I /∈ ⟨S′⟩.

With a little more work we can prove,

Proposition 2. There exists a bijection:
{
subgroups ⟨S⟩ ∈ Gn that are abelian and don’t contain −1

}
←→{

isotropic subgroup of Fn
2 ⊕ Fn

2

}
Theorem 1. There exists a bijection:

{
Pauli stabilizer codes

}
←→

{
isotropic subgroup of Fn

2 ⊕ Fn
2

}
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