
CS 593/MA 595 - Intro to Quantum Computing
Spring 2024

Tuesday, April 18 - Lecture 14.2
Today’s scribe: Shahbaz [Note: not proofread by Eric]

Agenda:

1. Distance and Rate for Pauli Stabilizer Code

2. Toric Code

1 Recall
A Pauli stabilizer code is any (non-trivial) subspace CS ⊆ (C2)⊗n defined by a set of Pauli operators
S = {g1, . . . ,gr | gi ∈ Gn}.

We might as well take CS =C⟨S⟩.

Theorem: Pauli stabilizer codes on n-qubits are in bijection with isotropic subspaces of (Fn
2 ⊕Fn

2,ω).

2 Rate and Distance for Pauli Stabilizer Code

2.1 A Crucial Lemma
A Pauli logical operator on CS is any E ∈ Gn such that E(CS) =CS.

Lemma: E ∈ Gn is a logical operator iff E commutes with every element of ⟨S⟩.

Thus, the set of all Pauli errors on CS is exactly

ES := ZGn(S) = {E ∈ Gn | Eg = gE∀g ∈ S}

In particular, if π : Gn −→ Fn
2 ⊕Fn

2 is the same as last class, then we have

π(ZGn(S)) = π(⟨S⟩)⊥

In fact, ZGn(S) = π−1(π(⟨S⟩)⊥)

2.2 Computing Rate
Note that if E1, E2 are two Pauli logical operators on CS, then E1, E2 implement the same operation on CS iff E1E−1

2 is
in ⟨S⟩ (up to phase.)

Thus, the group of non-trivial Pauli logical operators (ignoring phases ±1,±i) is π(⟨S⟩)⊥/π(⟨S⟩).

In other words, if GS is the group of all non-trivial Pauli operators of CS,

{±1,±i} −→ GS −→π(⟨S⟩)⊥ /π(⟨S⟩)
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The picture to keep in mind is:

{±1,±i} −→ Gn
π−→ Fn

2 ⊕Fn
2

= ⊆ ⊆

{±1,±i} −→ ES
π−→ π(⟨S⟩)⊥

⊆ ⊆ ⊆

{±1} −→ ⟨S⟩ −→ π(⟨S⟩)

Fun Fact: If W ⊆ Fn
2 ⊕Fn

2 is isotropic, then W⊥
/W has a symplectic product inherited from ω .

Now, GS =
ES /⟨S⟩ and we have

{±1,±i} −→ GS −→π(⟨S⟩)⊥ /π(⟨S⟩)

so the number of logical qubits is 1
2 dim(π(⟨S⟩)⊥/π(⟨S⟩))

2.3 Computing Distance
We need to know what the smallest element of ES acting non-trivially (ignoring phase) on CS is.

Given a vector (⃗x,⃗z) ∈ Fn
2 ⊕Fn

2, define the symplectic weight, denoted wt (⃗x,⃗z), as follows:

Let x⃗ = (x1, . . . ,xn) and z⃗ = (z1, . . . ,zn). Then, the symplectic weight is the number of columns in(
x1 . . . xn
z1 . . . zn

)
that do not contain both zeroes.

The distance of CS is then
min

(⃗x,⃗z)∈π(ES)−π(⟨S⟩)
wt (⃗x,⃗z)

This is hard to compute, but it is at least a combinatorial quantity.

2.4 Summary
A Pauli stabilizer code is determined by an isotropic subspace W ⊆ Fn

2 ⊕Fn
2.

The number of logical qubits is 1
2 dim(π(⟨S⟩)⊥/π(⟨S⟩)).

The distance is min
(⃗x,⃗z)∈π(ES)−π(⟨S⟩)

wt (⃗x,⃗z)

This characterizer Pauli stabilizer codes completely classically. We still need to understand encoding and decoding
circuits for these codes.

We won’t do this, but the summary is: They exist. They are efficient.

Given a set of stabilizers S, ∃ a polynomial time classical algorithm to construct encoding and decoding circuits.
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Unfortunately, in the world, these circuits are noisy.

Today, there is effort to optimize overhead in encoding/decoding circuits.

In principle, the threshold theorem says that as long as errors in gates are small enough, we can win.

3 Toric Code
Start with a square grid on a torus.

Rather than work with this figure, we cut it open to a square with periodic boundary condition.
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Now, put a qubit on each edge.

So, for a nxn grid, we have 2n2 qubits.

For each vertex v, and plaquette P in this grid, we define some Pauli stabilizers.

First, for a vertex v, label the 4 qubits around it as follows:

We define the vertex stabilizer, Av := XvN XvE XvS XvW .

Second, for a plaquette P, label the 4 qubits around it similarly:

We define the plaquette stabilizer, BP := ZPN ZPE ZPS ZPW .
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The toric code on 2n2 qubits (indexed by a square grid) is the Pauli stabilizer code generated by all the Av and BP.

Theorem: Toric code is a [[2n2,2,n]] QEC.

The moral is that this is decent code. We can get 2 logical qubits with arbitrary distance d using ”local” stabilizers.

The key to proving this is to understand logical Pauli operators ”geometrically.”
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