
CS 593/MA 592 - Intro to Quantum Computing
Spring 2024

Thursday, January 18 - Lecture 2.2
Today’s scribe: Aman

Reading: Subsection 2.2 of Nielsen and Chuang.

Agenda:

1. Axioms of Quantum Mechanics.

In the most common formulation of quantum mechanics, there are usually four axioms given, which is also the case
in Nielsen and Chuang. We will follow the same tradition, albeit we will be presenting the axioms in a different order
with the measurement axiom coming at the end.

1 The Axioms of Quantum Mechanics
In this section, we present the four axioms or postulates of quantum mechanics.

Note. These axioms will be for “closed” systems. This is quite a restrictive assumption as no experiment we can per-
form in the real world will behave exactly as such. (In some sense, the fault tolerance problem in quantum computing
is to over come this issue sufficiently well in order to build an error-free, programmable quantum mechanical system.)
However, one can derive the behavior of open systems from these.

Roughly, the axioms answer the following questions:

1. What is quantum stuff?

2. How do we combine quantum stuff?

3. Howe does quantum stuff behave dynamically, i.e., how does it change over time?

4. And, perhaps the most important one: What happens when we look at quantum stuff, i.e., measure it?1

Here, the first three deal with the question: What’s going on inside a box? The last one answers: What happens when
we open the box? The answer that the axiom gives has been fairly contentious for both physicists and philosophers,
since “wavefunction collapse” seems to contradict unitarity. We will blissfully ignore these important foundational
question, and now start presenting the axioms in the sequel with the name of the postulates inherited from the ordering
in Nielsen and Chuang.

1.1 Postulate 1.

Postulate 1:

The set of all (pure) configurations of a quantum system is described by some Hilbert space H . Any
non-zero vector in H is called a (pure) state. The Hilbert space H is called the state space.

We now provide some examples of instantiation of the above postulate:

1This is the subtlest one and the one you should be most focused on understanding.
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Examples.

1. A qubit is any quantum mechanical system where H ∼= C2.

2. A free particle in 3-dimensional space; H ∼= L 2(R3).

3. An electron, say in a hydrogen atom, trapped in one of two orbital configurations (ignoring the electron’s spin)
is a qubit, since H ∼= C2. However, strictly speaking, H < L 2(R3) is a subspace of the state space of a free
particle.

Note. Nielsen and Chuang requires all states to have length 1. A priori, their definition is much more constrained
than ours. However, this is not a big deal (justifying this requires the measurement axiom). That is,

|ψ⟩ ⇝normalize
1

⟨ψ|ψ⟩1/2 |ψ⟩= |ψ⟩
∥|ψ⟩∥

.

Definition. Further, if |ψ1⟩, . . . , |ψk⟩ ∈ H are non-zero vectors (i.e., states) and we have

|ψ⟩= ∑
i∈[k]

zi|ψi⟩ ̸= 0⃗ (1)

for some zi ∈ C, then we say that |ψ⟩ is a quantum superposition of the |ψi⟩’s. The zis in (1) are called unnormalized
amplitudes. The (normalized) amplitudes are given by

zi

⟨ψ|ψ⟩1/2 .

1.2 Postulate 4.

Postulate 4:

Given two disjoint quantum systems with state space H1 and H2, the state space of the combined
quantum system is the tensor product H1 ⊗H2.

Here are some examples to illustrate the above postulate:

Examples.

1. For two qubits, we have H ∼= C2 ⊗C2.

2. For n−qubits, we have H ∼= (C2)⊗n ≜ C2⊗·· ·⊗︸ ︷︷ ︸
n times

C2.

Definition. We call the ordered basis

|0 · · ·0⟩, |0 · · ·01⟩, |0 · · ·10⟩, |0 ·11⟩, . . . |11 · · ·10⟩, |1 · · ·1⟩

the computational basis of (C2)⊗n.

1.3 Postulate 2.

Postulate 2 (Global Version):
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Given a closed quantum system with state space H and two moments in time t1 < t2, there exists a
unitary operator U : H → H such that if the system is in state |ψ1⟩ at time t1, then at time t2, the
system will be in state |ψ2⟩=U |ψ1⟩.
Put simply, time evolution is unitary.

We again offer instances to exemplify the above postulate:

Examples.

1. The identity matrix I : H → H is unitary and changes nothing.

2. Define H : C2 → C2, the Hadamard gate, by

H ≜
1√
2

(
1 1
1 −1

)
. (2)

Moreover, let |+⟩ = H|0⟩ = 1√
2
(|0⟩+ |1⟩) and |−⟩ = H|1⟩ = 1√

2
(|0⟩− |1⟩). It is easy to check that |+⟩, |−⟩

form an orthonormal basis of C2, whence we see H is unitary. Now, note here that H|+⟩= |0⟩ and H|−⟩= |1⟩,
and thus, H2 = I. This then implies that the eigenvalues of H are ±1.

Further, note that we have

H(|0⟩+ |+⟩) = |+⟩+ |0⟩
= |0⟩+ |+⟩,

which is the eigenvector of H corresponding to the eigenvalue 1. One might be tempted to guess that the other
eigenvector is perhaps |1⟩+ |−⟩, but it is a scalar multiple of |0⟩+ |+⟩! Instead, the eigenvector corresponding
to H is |1⟩− |−⟩:

H(|1⟩− |−⟩) = |−⟩− |1⟩
=−(|1⟩− |−⟩).

3. The nth tensor product H⊗n : (C2)⊗n → (C2)⊗n acts on n-qubits. For instance, we have

H⊗n|0 · · ·0⟩= (H|0⟩)⊗n

= (|+⟩)⊗n

=

(
|0⟩+ |1⟩√

2

)⊗n

=

(
1√
2

)n 2n−1

∑
i=0

|i⟩︸︷︷︸
expressed in binary.

.

Thus, H|0 · · ·0⟩ is an equal superposition of all of the computational basis vectors. This state gets used a lot in
quantum algorithms (and is at the root of the common misconception that quantum computers can “computer
all possible inputs to a problem in parallel”—do not make that mistake yourself!).

Postulate 2 (Infinitesimal Version):
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Given a closed quantum system with state space H , there exists a Hermitian operator H : H → H
called the quantum Hamiltonian such that the time evolution of the system is determined by the
differential equation:

iℏ
d
dt
|ψ⟩= H|ψ⟩. (3)

This is the famous Schrödinger’s equation. Note that ℏ is some universal physical constant ℏ ∈ R
called the Planck’s constant.

Interpretation. Since H plays the role of the “observable of energy”, the above gives a quantum formulation of
conservation of energy. Making this precise requires the measurement axiom.

Remark. The infinitesimal and global versions of postulate 2 are equivalent as we shall now show.

Consider (3) as follows:

iℏ
d
dt
|ψ⟩= H|ψ⟩ ⇐⇒ d

dt
|ψ⟩= −i

ℏ
H|ψ⟩.

Letting |ψ; t1⟩ and |ψ; t2⟩ as the state ψ at times t1 < t2, we have

|ψ; t2⟩=
∫ t2

t1

−i
ℏ

H|ψ; t1⟩dt

=

(∫ t2

t1

−i
ℏ

Hdt
)
|ψ; t1⟩

= exp
[
−i
ℏ

H(t2 − t1)
]
|ψ; t1⟩, (4)

where we recall that ẋ(t) = Ax =⇒ x(t) = exp(At)x(0) in (4). One can now check that the exponential term is unitary
precisely because H is Hermitian.

1.4 Postulate 3.

Postulate 3 (Projecive Measurement Version, aka the Born Rule):

Given a quantum mechanical system with state space H , the observables (i.e., observable physical
quantity) of this system are precisely the Hermitian operators M : H → H .

The set of outcomes associated to the measurement of an observable M is exactly the set of eigenval-
ues of M (without multiplicity).

Moreover, if the system is in state |ψ⟩ when M is measured, then we get an outcome λ with probability

Pr(λ ||ψ⟩)≜ ⟨ψ|Pλ |ψ⟩
|⟨ψ|ψ⟩|

, (5)

where Pλ is the orthogonal projection onto the λ -eigenspace of M.

Finally, if we observe outcome λ , then the system will change to be in the state Pλ |ψ⟩, also known as
“measurement collapse.” It is important to note here that this is no longer unitary.
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