
CS 593/MA 592 - Intro to Quantum Computing
Spring 2024

Thursday, January 11 - Lecture 1.2
Today’s scribe: Raghav

Reading: Subsections 2.1.7-2.1.9 of Nielsen and Chuang. You should also be wrapping up the front matter and
Chapter 1.

Agenda:

1. Proof of spectral theorem

2. Examples of Hilbert spaces

3. Pauli operators

I covered less today than I intended. In particular, I did not get to tensor products or simultaneous diagonalizability,
which we will now do Tuesday before discussing the axioms of quantum mechanics.

1 Proof of spectral theorem
Theorem 1. An operator A : H → H is unitarily diagonalizable if and only if A is normal (i.e. AA∗ = A∗A).

Let’s give the sketch of the proof. See the book for full details. I want to explain what’s going on at, hopefully, a
more conceptual level.

Proof. Since this is an “if and only if” statement, we need to prove two things.

=⇒ This is the easy direction. If A is diagonalizable, diagonalize it. In this basis, the matrix of its adjoint is the
diagonal matrix whose diagonal entries are the conjugates of the diagonal entries of A; then A is normal because
C is commutative.

⇐= This is the hard direction. We will use induction on dimH . (This is why we must assume H is finite dimen-
sional; it’s worth noting that there are generalizations to the infinite dimensional setting.)

Let λ be an eigenvalue of A, and let Pλ be the orthogonal projection onto the λ -eigenspace, Eλ ⊆ H .1 We can
write IH = Pλ +Q where Q is the projection onto E⊥

λ
(the orthogonal complement of Eλ ).2

Notice that A = IAI = Pλ APλ +Pλ AQ+QAPλ +QAQ. Since Pλ and Q are projections onto orthogonal sub-
spaces, Pλ AQ = QAPλ = 0. Now, since H is finite dimensional, we can proceed inductively on dimH . When
dimH ∈ {0,1}, A must be a scalar, which is trivially normal. In the inductive case, since dimE⊥

λ
< dimH , we

know that QAQ|E⊥
λ

is unitarily diagonalizable.3 By a similar argument, Pλ APλ |Eλ
is also unitarily diagonalizable

(in fact, it of course just looks like λ I|Eλ
). Hence, there are orthonormal bases B1,B2 in which QAQ|E⊥

λ

and
Pλ APλ |Eλ

, respectively, are diagonal. It is now easy to check that B1 ∪B2 is an orthonormal basis in which A
is diagonal.

1Here, an operator P is an orthogonal projection onto the subspace E if P(H ) = E and P2 = P∗ = P.
2It is possible that Eλ = H in which case E⊥

λ
is trivial, but this implies that A = λ I, which is already diagonal in EVERY orthonormal basis!

3The inequality is strict because Eλ is the subspace corresponding to a honest eigenvalue, hence its dimension is at least 1. This in turn means
E⊥

λ
has dimension at most dimH −1.
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2 Examples of Hilbert Spaces
Last time I painstakingly (painfully?) defined Hilbert spaces, but I didn’t get you any examples! Let’s rectify that.

2.1 The trivial Hilbert space
This is trivial vector space over C consisting of only a zero vector. The inner product of this vector with itself is 0.
Yawn.

2.2 C itself
Of course C is a vector space over C. Now define the inner product by ⟨z,w⟩= z∗w. You should check this is indeed
a Hilbert space, but, also yawn.

2.3 Qubits and qudits, kets and bras
This is where the fun begins.

A qubit is any 2-dimensional Hilbert space. All qubits are isomorphic to the vector space C2, which is often (in
elementary linear algebra classes) defined as “columns of complex numbers of length 2” with the inner product defined
by the (conjugate linear) dot product: 〈(

z1
z2

)
,

(
w1
w2

)〉
:= z∗1w1 + z∗2w2

I prefer to define it a slightly different way. But, since I can’t help myself, let’s do things a little more generally.
A qudit is any d-dimensional Hilbert space. (Taking d = 2 yields a qubit.) All qudits are isomorphic to the vector

space Cd , which I will define to be the unique Hilbert space with an orthonormal basis consisting of the set of symbols
{|0⟩, |1⟩, . . . , |d − 1⟩}. We sometimes call these symbols “kets.” More generally, any vector in any Hilbert space can
be called a “ket.”4

More concretely, with this definition, Cd is the vector space consisting of (formal) linear combinations of the
symbols |0⟩, |1⟩, . . . , |d −1⟩. This means a general vector—or ket—in Cd , which I will denote by |x⟩ where x is some
other symbol (that is, x is not (necessarily) one of the indices 0,1, . . . ,d −1) looks like

|x⟩=
d−1

∑
i=0

zi|i⟩.

where zi ∈ C. The inner product of Cd is defined on the defining basis in a way that makes it orthonormal. That is

⟨|i⟩, | j⟩⟩= δi j =

{
0 if i ̸= j,
1 if i = j.

.

Since this is patently absurd notation, we will clean it up, by defining

⟨i| j⟩ := ⟨|i⟩|| j⟩⟩.

This is called bra-ket notation.5 Note that knowing the definition of the inner product is enough to know it on any two
general vectors. Indeed, let

|x⟩=
d−1

∑
i=0

zi|i⟩

4There is no definition to make here, other than to say that “ket” is simply a synonym for vector. Bras are a different story that you will see on
your homework.

5Note that the ket | j⟩ is the right “half” of the bra-ket ⟨i| j⟩. You will make sense of the left ”half” ⟨i| on your homework; it is called a bra, and,
techincally speaking, is an element of the dual Hilbert space.
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and

|y⟩=
d−1

∑
i=0

wi|i⟩

be two arbitrary vectors in Cd . Then, because the basis kets are orthogonal, when we expand out the bra-ket ⟨x|y⟩
using sesquilinearity, the cross terms cancel and we are left with

⟨x|y⟩=
d−1

∑
i=0

z∗i wi.

Worth reiterating: every finite dimensional Hilbert space is isomorphic to Cd for some non-negative integer d.

2.4 Infinite dimensional Hilbert spaces
Infinite dimensional Hilbert spaces won’t play a very large role in this class; one can also arrange to avoid them in
most quantum computing discussion. However, sometimes this is unnatural. So, I will discuss these only to be sure
you have good culture.

Probably the most important example of a Hilbert space (indeed, even more important than a qubit!) is L2-
integrable functions on Rk. That is, we can define an (infinite dimensional) vector space over C by looking at

L2(Rk) := { f : Rk → C |
∫
Rk

| f (x)|2dx < ∞}/∼

where f ∼ g if f (x) = g(x) for x in a set of full measure. (Equivalence classes of) functions in L2(Rk) are what physi-
cists had in mind when they invented the terminology “wavefunction,” since it’s things like these that, for example,
describe electrons as “waves” permeating space; in particular, allowing one to formalize the idea that an electron’s
“position” is really a probability distribution over all of space!

The inner product is defined by integration via

⟨ f |g⟩ :=
∫
Rk

f ∗(x)g(x) dx.

A fun fact is that all “separable” (roughly, meaning NOT uncountably infinite-dimensional) Hilbert spaces are
isomorphic. In particular, L2(Rk) ∼= L2(Rl) even if k ̸= l. In other words, up to isomorphism, there is basically only
one (separable) infinite-dimensional Hilbert space.

2.5 Hilbert space generated by a (finite) set
Let S be a finite set. Exactly as for Cd , we can define C[S] to be the Hilbert space spanned by S with the inner product
defined (as above) using ⟨s|t⟩= δst . In this notation, Cd = C[{0,1,2, . . . ,d −1}].

What if S is not finite? Then we can stil eke something out, similar to L2:

C[S] :=

{
∑
s∈S

zs|s⟩ : ∑
s∈S

|zs|2 < ∞

}
.

If S is countably infinite, then C[S] ∼= C[N] := ℓ2, the Hilbert space of all square-sumable sequences. Moreover,
ℓ2 ∼= L2(R).

3 Pauli operators
The Pauli operators are important examples of linear operators on qubits. They are defined as matrices:6

6Unless otherwise stated, any time we define an operator on a qudit using a matrix, we assume we are using the standard (ordered) basis
|0⟩, . . . , |d −1⟩
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σ0 = I

σ1 = X =

[
0 1
1 0

]
(bit swap)

σ2 = Y =

[
0 −i
i 0

]
(composite error)

σ3 = Z =

[
1 0
0 −1

]
(relative phase error)

Example: If |φ⟩= a|0⟩+b|1⟩, then X |φ⟩= b|0⟩+a|1⟩. Z|φ⟩= a|0⟩−b|1⟩.
All the Pauli operators are both Hermitian and unitary. It’s not easy to explain or justify now why they are

important. But they do have some nice formal properties, one of which I can explain now.

Definition. If H is a finite-dimensional Hilbert space, then let B(H ) be the set of all linear operators on H , that
is,

B(H ) := {A : H → H }.

Let me reiterate that B(H ) is all operators on H . Then B(H ) is a complex vector space with dimension
dimH 2.

Let Bsa(H ) denote the subset of B(H ) consisting of all self-adjoint operators. Note that it really does not make
sense to call Bsa(H ) a subspace of B(H ) because it is not closed under scalar multiplication by imaginary numbers.
However, this is essentially the only reason that Bsa(H ) is not a subspace. In other words, if we only look at real
linear combinations of elements of Bsa(H ), then we get a real subspace of B(H ), considered as a real vector space.

With this all in mind, one can check very easily that {I,X ,Y,Z} is a basis of Bsa(C2).
More is true. B(H ) can be made into a Hilbert space by equipping it with the “Hilbert-Schmidt inner product”

(aka “trace product”; see Exercise 2.39 in Nielsen and Chuang). Then {I,X ,Y,Z} is an orthogonal basis.
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