
CS 593/MA 592 - Intro to Quantum Computing
Spring 2024

Tuesday, March 19 - Lecture 10.1
Today’s scribe: Linkai Ma [Note: note proofread by Eric]

Reading: Chapter 5.3 & Appendix 4 of Nielsen and Chuang, Chapter 13 & Appendix A of Kitaev, Shen and Vyalyi

Agenda:

1. Simon’s algorithm

1 Simon’s Problem
Simon’s problem is an important predecessor of Shor’s algorithm, which generalizes to Bernstein-Vazirani and Deutsch-
Jozsa. It can be futher generalized to the hidden subgroup problem. It gives an oracle separation of BQP and BPP.

Input: (Quantum) oracle access to a funciton F = Fs

F : {0,1}n = (Z/2Z)n −→ {0,1}n

such that F(x) = F(y) if and only if x = y⊕ s

Note that ⊕ is the group operation on (Z/2Z)n, which is bitwise addition mod 2.

Output: s

Remark. 1. In the problem statement, the group structure on the domain of F is important. However, group
structure on the codomain is not important.

2.

< s >= {0,s} ∼=

{
{0} if s = 0
Z/2Z if s ̸= 0

So, we can interpret F as a function on (Z/2Z)n that is ”hiding” the subgroup < s >⊆ (Z/2Z)n.

3. Another interpretation: F is a periodic function on (Z/2Z)n with ”periodicity” given by s.

In the quantum version of the problem, we will assume as usual that we have quantum oracle access to F via
unitary dilation.

UF : (C2)⊗n ⊗ (C2)⊗n −→ (C2)⊗n ⊗ (C2)⊗n

|x,y⟩ 7−→ |x,F(x)⊕ y⟩

Example: n = 3,s = 101

x Fs(x)
000 000
001 001
010 010
011 011
100 001
101 000
110 011
111 010

1

Proposition 1. For any classical probabilistic algorithm making no more than 2
n
2 many queries to the oracle, there

exists an s∈{0,1}n and a Simon oracle Fs for that s for which the algorithm fails to return the correct s with probability
≥ 1

3 .

Thus, any classical probabilistic algorithm requires time at least 2
n
2 to find s (with good confidence). In fact Θ(2

n
2)

orcale access is enough to confidently identify s classically.
Naively, one might expect to need 2n, but the birthday paradox gets us down to 2

n
2 .

Idea for classical algorithm:
Randomly pick two bit string x,y ∈ {0,1}n and hope for a collision, i.e., hope that F(x) = F(y). If this happens

and x ̸= y,then s = x⊕ y. We can use the birthday paradox to show this can be made to work with high confidence as
long as we make at least 2

n
2 queries.

Issue:
How do we know that being ”unlucky” a lot (finding no collisions) can not be used to deduce something helpful

about s.
Idea of proof:

Need to fix a classical probabilistic algorithm first.
Then it suffices to find a single s and Fs such that the algorithm fails on that Fs with probability ≥ 1

3 .
Pick s ”cleverly” and consider a randomly chosen oracle for that s(there are exponentially many). Now argue that

the probability that the algorithm fails for a random oracle ≥ 1
3 .

Deduce that there must exist at least one ”actual” orcale Fs for which the algorithm fails with probability ≥ 1
3 .

Simon’s algorithm solves Simon’s problem (quantum version) using O(n) calls to the oracle with time O(n3).
Given s ∈ {0,1}n = (Z/2Z)n, define < s >⊥= {x ∈ (Z/2Z)n : x · s = 0 mod 2}.
Note: < s >⊥ determines s.
Given g1, · · · ,gl such that < g1, · · ·gl >=< s >⊥, then the linear system

g1 · z = 0 mod 2
g2 · z = 0 mod 2

· · ·
gl · z = 0 mod 2

has a unique solution given by z = s.
This linear system can be solved in time O(l3). Thus to find s, it suffices to find g1, · · · ,gl that generates < s >⊥,

where l = O(poly(n)).
To find generators of < s >⊥, we are going to use UF and a similar procedure to previous algorithms.

|0 · · ·0⟩ H⊗n

UF

H⊗n

|0 · · ·0⟩

Lemma 2. The output y of the first register in above circuit is uniformly randomly chosen element of < s >⊥.

Intuition: quantum oracle access to Fs allows us to uniformly randomly sample from < s >⊥. Using this and the
following lemma, we can find g1, · · · ,gl such that < g1, · · ·gl >=< s >⊥ without too much work and with high
probability.

Lemma 3. Let G be a finite abelian group and let g1, · · · ,gl be uniformly randomly independent chosen elements of
G, then:

P(< g1, · · · ,gl >= G)≥ 1− |G|
2l

Remark. If G is not abelian, replace |G| with the number of maximal subgroups of G.

2

2 Simon’s Algorithm

1. Choose l so that 1− 2n

2l ≥ 1
3 . Clearly l = O(n) suffices.

2. Use l calls to UF (can do this in parallel) to get g1, · · · ,gl , which are uniformly randomly sampled elements of
< s >⊥.

3. Classically solve the linear system {gi · z = 0 mod 2|i = 1, · · · , l}

Proof of lemma ??:
Let’s compute the state we get before measuring:

(H⊗n ⊗ Id)◦UF ◦ (H⊗n ⊗ Id) (|0 · · ·0⟩⊗ |0 · · ·0⟩)

= (H⊗n ⊗ Id)◦UF

(
∑

x∈(Z/2Z)n
2−

n
2 |x⟩⊗ |0 · · ·0⟩

)

= (H⊗n ⊗ Id)

(
2−

n
2 ∑

x∈(Z/2Z)n
|x⟩⊗ |F(x)⟩

)
= 2−n

∑
x,y∈(Z/2Z)n

(−1)x·y |y⟩ |F(x)⟩

if s ̸= 0, then for each x ∈ (Z/2Z)n, #F−1(F(x)) = 2. So, if z ∈ Range(F), then F−1(z) = {xz,1,xz,2}= {xz,1,xz,1⊕
s}

Using this for each y ∈ {0,1}n, the probability of measuring y is

P(y) = || ∑
x∈(Z/2Z)n

2−n(−1)x·y |F(x)⟩ ||2

= || ∑
z∈Rnage(F)

∑
x∈F−1(z)

2−n(−1)x·y |z⟩ ||2

= 2−2n
∑

z∈Rnage(F)

||(−1)xz,1·y |z⟩+(−1)xz,2·y |z⟩ ||2

= 2−2n
∑

z∈Rnage(F)

|1+(−1)s·y|2

=

{
0 if s · y = 1 mod 2

1
|<s⊥>| if s · y = 0 mod 2

3

