CS 593/MA 592 - Intro to Quantum Computing
Spring 2024
Tuesday, March 19 - Lecture 10.1

Today’s scribe: Linkai Ma [Note: note proofread by Eric]

Reading: Chapter 5.3 & Appendix 4 of Nielsen and Chuang, Chapter 13 & Appendix A of Kitaev, Shen and Vyalyi

Agenda:

1. Simon’s algorithm

1 Simon’s Problem

Simon’s problem is an important predecessor of Shor’s algorithm, which generalizes to Bernstein-Vazirani and Deutsch-
Jozsa. It can be futher generalized to the hidden subgroup problem. It gives an oracle separation of BQP and BPP.

Input: (Quantum) oracle access to a funciton F = F;
F:{0,1}" = (Z/22)" — {0,1}"
such that F'(x) = F(y) if and only if x =y D s
Note that @ is the group operation on (Z/2Z)", which is bitwise addition mod 2.
Output: s

Remark. 1. In the problem statement, the group structure on the domain of F is important. However, group
structure on the codomain is not important.

0}ifs=0
<s>= {05t {0}
Z/2Z if s #0
So, we can interpret F as a function on (Z/2Z)" that is "hiding” the subgroup < s >C (Z/2Z)".
3. Another interpretation: F is a periodic function on (Z/27)" with “periodicity” given by s.

In the quantum version of the problem, we will assume as usual that we have quantum oracle access to F via
unitary dilation.

Ur : (C2)®n®((c2)®n SN (C2)®n®(c2)®n
lx,y) — [x, F (x) &)

x | Fs(x)

000 00

001 | 001

010 | 010

Example: n =3,5s =101 011 | 011
100 | 001

101 | 000

110 | 011

111 | 010

Proposition 1. For any classical probabilistic algorithm making no more than 23 many queries to the oracle, there
exists an s € {0, 1}" and a Simon oracle F for that s for which the algorithm fails to return the correct s with probability
>1
- 3'

Thus, any classical probabilistic algorithm requires time at least 2% to find s (with good confidence). In fact @(2%)
orcale access is enough to confidently identify s classically.

Naively, one might expect to need 2", but the birthday paradox gets us down to 23,
Idea for classical algorithm:

Randomly pick two bit string x,y € {0,1}" and hope for a collision, i.e., hope that F(x) = F(y). If this happens
and x # y,then s = x®y. We can use the birthday paradox to show this can be made to work with high confidence as
long as we make at least 23 queries.

Issue:

How do we know that being “unlucky” a lot (finding no collisions) can not be used to deduce something helpful
about s.
Idea of proof:

Need to fix a classical probabilistic algorithm first.

Then it suffices to find a single s and F; such that the algorithm fails on that F; with probability > %

Pick s ’cleverly” and consider a randomly chosen oracle for that s(there are exponentially many). Now argue that
the probability that the algorithm fails for a random oracle > %

Deduce that there must exist at least one “actual” orcale F; for which the algorithm fails with probability > %

Simon’s algorithm solves Simon’s problem (quantum version) using O(n) calls to the oracle with time O(n?).
Given s € {0,1}" = (Z/27)", define < s >*= {x € (Z/2Z)" : x-s = 0 mod 2}.
Note: < s > determines s.
Given g1,---,g; such that < gp,---g; >=< s >, then the linear system

g1-z=0mod 2
g2-z=0mod 2
g1-z=0mod 2

has a unique solution given by z = s.

This linear system can be solved in time 0(13). Thus to find s, it suffices to find gy,-- - ,g; that generates < s >,
where [= O(poly(n)).

To find generators of < s >, we are going to use Ur and a similar procedure to previous algorithms.

|0 .. .()> Hen H®n X
Ur

0---0) |

Lemma 2. The output y of the first register in above circuit is uniformly randomly chosen element of < s >=.

Intuition: quantum oracle access to Fy allows us to uniformly randomly sample from < s >*. Using this and the

following lemma, we can find g;,---,g; such that < g;,---g; >=< s > without too much work and with high
probability.
Lemma 3. Let G be a finite abelian group and let g1,--- ,g; be uniformly randomly independent chosen elements of
G, then:

G|

IP)(<g17"'agl >:G)Zl_ 2[

Remark. If G is not abelian, replace |G| with the number of maximal subgroups of G.

2 Simon’s Algorithm

1. Choose [so that 1 — 22—7 > % Clearly [= O(n) suffices.

2. Use [calls to U (can do this in parallel) to get g1, -- - ,g;, which are uniformly randomly sampled elements of
<s>t

3. Classically solve the linear system {g;-z=0mod 2|i=1,---,I}

Proof of lemma ??:
Let’s compute the state we get before measuring:

(H®"®1d)oUr o (H*" ®1d) (|0---0)®10---0))

= (H*"®1d) o U (Z 273 x>®0--.0>>

xe(Z)2Z)"

= (H”"®1d) (2‘3 Y |x>®|F(X)>>

x€(Z/2Z)"
=27"), (=)WIFX)
xye(Z/22)"

if s # 0, then for each x € (Z/2Z)", #F ~'(F(x)) = 2. So, if z € Range(F), then F~'(z) = {x,1,x;2} = {x,1,%.1 @
s}

Using this for each y € {0, 1}", the probability of measuring y is

P) =1l Y 27"CD7IF&)P

xe(Z)2Z)"

=Y X 2"CnvRP
)

zE€Rnage(F) xcF~1(z

2 Y1))+ ()R [|2

z€Rnage(F)
=27 Y [I+(=D)"7P
zERnage(F)
AL if s-y=1mod 2
_{<31¢>| if s-y=0mod 2

