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1 Pauli Group G,

To reduce Pauli stabilizer codes to classical representation, we are interested in the commutation of Pauli oper-
ators. Here we use [g, h] = ghg~'h~"! to denote the commutator in group-theoretic sense. So, the commutator
of Pauli operators are,

[X,Y]=XYX 'Y= XYXY =]
(X, 2] =V, Z] = -1

Using this notion of commutator, Pauli group G; of one qubit Gy = {£I, +il, £ X, +i X, +Y, +iY, + 7, +iZ}
can be decomposed into two subgroups:

e The center (i.e. the subset of elements that commute with every other element) of Gy, C(G1) = {1, +il}.
This subgroup is isomorphic to Z/4Z.

e The quotient group G1/{£1,+i}. This subgroup is isomorphic to Z/2Z & Z/27Z.

In the following sections, we use Fs to denote Z/2Z for convenience.

2 Reduce Pauli Group G, to Symplectic Vector Space

We already have a good idea about G;. Now we will use symplectic vector space to investigate G,,. First, let’s
define a notation that encode a sequence of Pauli operators as a vector of Fs,

X(@ = HXf(i) for any & € Fy
=1
Z(Z) = H Zig(i) for any 2’ € Fy
i=1
For example, X(1,0,1) = X ® I ® X. Using this notation, G,, can be written as,

Gn = {(nX(9)Z(2)| 7,2 € Fy,n € {£1,+i}}

Here are some simple observations of X (Z) and Z(Z2).
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Then we define symplectic product as a operator on symplectic vector space Fy & Fy.

Definition 1 (Symplectic Product on F4 & F%). Symplectic product is an operator w takes two Fy @ Fy and
returns a single F5, which

w: (FraF) xFraF; — F
(#1,21),(%2,%2)) = T -Zo+dz 2

Now we are ready to introduce a homomorphism from Pauli group G,, to symplectic vector space Fy @ F5.



Lemma 1 (Homomorphism from Pauli Group to F§ @ F%). There exists a surjective group homomorphism 7,
that maps elements in Pauli group G, to Fy @ F3

T Gy — FyoFy
nX(2)Z(7) ?

Proof. Once we multiply two elements in G,,, we have,

= mneX(T1)Z(%
= mn(—1)7"2
= mna(-1)

(

Thus, W(an(fl)Z(gl) 772X(fz)Z<52)) =T 771X(£f"1 Z(Zl))
Lemma 2. 1 X(%)Z(Z1) and 1, X (Z2)Z (%) commute iff w((Z1, 21), (T2, 22)) = 0.

Proof. Using (1) to exchange X and Z,
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Thus

(X (#1)Z(%1), 12X (£2) Z(Z2)] = (—1)(FvA) 2D
Then m X (Z1)Z(21) and 12 X (#2)Z(Z2) commute if and only if w((fl, Z1), (%, 22)) =0. O

3 Subspaces generated by Pauli Stabilizer

Now we discuss subspaces generated by a set of Pauli stabilizer: S C G,,.
Lemma 3. If (S) generates a nonabelian group, then —I € (5).

Proof. On one hand, if (S) is nonabelian, exists g, h € (S) such that, [g, h] # I. On the other hand, as we know
from Lemma 2, [g,h] = +1. Thus we get [g,h] = —I. And because [g, h] € (S), we know —TI € (S5). O

Lemma 4. If (S) generates an abelian group and —I ¢ (S), then for any g € (S), g?> = I, and in particular,
n(g) = +1 where g = 1(g) X (Z4) Z(Z)-

Proof. 1f (S) is abelian, then, g% = 1(9)2X (27,)Z(2%,) = n(g9)?. And because —I ¢ (S), g*> # —I, which means
n(g) # +i. Then n(g) = £1. O

Before discussing C'g, the vector space stabilized by S, we have to define notation of sympletic complement
for sympletic vector space.

Definition 2 (Sympletic Complement). Let W C F} & F%, the sympletic complement of W is defined by,

Wt = {(f,g) cF} & F}

w((Z, %), (w0, 1)) = 0, for any (i, W) € W}
We also say W is isotropic iff W C W+.

Example 1. Let W = {(Z,0)|% € Fo} C F} ® F}. It’s easy to show that W = W+,
e W C W+: Obviously, w((#1,0), (Z2,0)) = 0.
o WL CW: If for any w € Fy, w((1,0), (Z, 7)) = 0, then 2 = 0.

Lemma 5. If (S) is abelian, then 7(({S)) is an isotropic subspace. And 7 : (S) — F3 & FJ is injective iff
—1¢(9).

Lemma 5 means we can always map any abelian subspace of G,, that not containing —I to an isotropic
subspace of F§ @ FZ. This map is also bijection but it will be hard to prove that.

Definition 3 (Symplectomorphism). An isomorphism « : FY & Fy — F2 @ FY is a symplectomorphism, if for
any (fl, Zl), (IEQ, 52) S ]Fg D Fg’,

w(a(fh 51), Oé(fg, 52)) = w((fl, 51), ({fg, 22))



Definition 4 (Clifford Unitary). Any unitary U : (C?)®" i (C?)®" is called Clifford, if for any g € G,,
UgU* € G,
Here we list some key facts about isotropic subspace and symplectomorphism.

1. Isotropic subspace of Iy @ F7 have dimension at most n.
2. Any two isotropic subspace of the same dimension are equal up to symplectomorphism.

3. Any symplectomorphism can be implemented by a Clifford operator U, i.e. 7(UgU*) = a(n(g)).

Proposition 1. Cg = {0} & —I € (S).
Proof. (<) This direction we have proved last time.

(=) For any clifford U we have U(—I)U* = —I and UCs = Cygy«. So in particular, it suffice to find a clifford
U for which we can show —I ¢ (USU*).
By Fact 3, it suffices to find a symplectomorphism «, such that a(w((S))) =7((5")) where —I ¢ (S).
By Fact 1 and 2, we know that dim 7 ((S)) =k < n.
And by Fact 2, we can use symplectomorphism « that maps 7r(<5’>) to the following isotropic subspaces.

{($1,3§‘2,...,$k, 0,...,0, 0,...,0) | L1, T2, .., T E]FQ} CF} e Fy
—_—— ——

n—k n
This is exactly 7((S’)) where,
S = {X(:L‘l,xg,...,xk,ow.‘,()) | X1,Z2,...,Tk € FQ} c G,
which means —I ¢ (S).
With a little more work we can prove,

Proposition 2. There exists a bijection: {subgroups (S) € G,, that are abelian and don’t contain —1} —
{isotropic subgroup of Fy & Fg}

Theorem 1. There exists a bijection: {Pauli stabilizer codes } — { isotropic subgroup of Fy & IFS}



