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Scribe: Wenbo [Note: not proofread by Eric]

Reading: Section 10.6 Nielsen and Chuang

1 Computing Rate and Distance of Toric Code

1.1 Toric Code
Let’s start with a square n×n grid on a torus.

Figure 1: A torus

Rather than drawing the daunt-shaped figure shown in ??, we cut it open to a square with periodic boundary
conditions.

Figure 2: Cut a Torus open to a square with periodic boundary conditions. The lines with an arrow represent the cut

For each edge, we put a qubit on it. Therefore, there are a total of 2n2 qubits. For each vertex v, we label the 4
qubits around it with vN ,vW ,vE ,vS like in ??
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Figure 3: One way to label vertices around a vertex v

Then, we define a vertex stabilizer Xv for the vertex v as the following

Xv = XvN XvE XvS XvW (1)

For each plaquette P, we label qubits around it similarly like the ?? below

Figure 4: One way to label vertices around plaquette P

Again, we define a plaquette stabilizer ZP for the plaquette P as the following

ZP = ZPN ZPE ZPS ZPW (2)

Definition 1.1 (Toric Code). Toric code on 2n2 qubits is the stabilizer code Cn with stabilizer generators

Sn = {Xv,ZP|v vertex,P plaquette in n×n grid on torus} (3)

where Xv and ZP are defined in ?? and ??, respectively.

Example 1.2 (Toric Code). The ?? is a square 4× 4 grid on a torus. Then, Xv for some vertex v and ZP for some
plaquette P can be visualized by the following diagram

Figure 5: ZP and Xv
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1.2 Rate and Distance of Toric Code
Theorem 1.3. Toric code (??) Cn ≤ (C2)⊗(2n2) is a

[
[2n2,2,n]

]
quantum error correction code.

Definition 1.4 (String and Dual String). A string γ is any connected path of edge in torus. A dual string γ̂ is any
connected path in “dual” torus. (It is basically a path connecting some plaquettes)

Definition 1.5 (String Operators). Let γ be a string defined in ??. The string operator Zγ is the Pauli operation
formed by applying Z’s along every qubit on the edges of γ .

Similarly, let γ̂ be a dual string. The string operator Xγ̂ is the Pauli operator formed by applying X’s to qubits
along the edges that γ̂ acrosses.

Lemma 1.6. The string operators Xγ̂ and Zγ generate the Pauli group G2n2 up the phases

Proof of ??. Let Xγ̂ ,Zγ be string operators for strings of length 1. Clearly, these operators act on individual qubits on
the torus. Therefore, they generate the group G2n2 .

Definition 1.7 (Closed String). A string γ (or dual string γ̂) is closed if it gives a path without endpoints.

Lemma 1.8. A string operators Xγ̂ or Zγ commutes with every stabilizer generator in Sn (??) if and only if γ or γ̂ are
closed.

Proof of ??. Consider Xγ̂ . Suppose γ̂ is not closed. Then, there must exist different plaquettes P0 ̸= P1 such that they
are at the end of γ̂ .

Figure 6: An example of γ̂ (green line)

Then, let’s show [Xγ̂ ,ZP0 ] ̸= I. For the sake of clarity, let’s label the qubits in the following way

Figure 7: Labelled Qubits around the Plaquettes P0

Then, by definition of the string operator and ZP0 , we know

Xγ̂ ZP0 =

 · · ·︸︷︷︸
X’s far away from P0

X5X4

(Z1Z2Z3Z4) (4)

=X4 (Z1Z2Z3Z4)(· · ·X5) (5)
=− (Z1Z2Z3Z4)X4 (· · ·X5) (6)
=−ZP0Xγ̂ (7)
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Similarly, for a string γ (a string in the torus, not a dual string). If γ is not closed, then Zγ does not commute with the
Xv’s for the v’s at the end of γ .

Figure 8: a γ string (purple line)

Conversely, suppose the string γ is closed.

Figure 9: An example of closed string γ (Purple Line)

Need to show [Zγ ,Xv] = [Zγ ,ZP] = I. [Zγ ,ZP] = I is trivial. So, it suffices to show [Zγ ,Xv] = I. Again, let’s label
the qubits around some vertex v on the path γ as the following

Figure 10: Labelled Qubits around the Vertex v
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Figure 11: γ is a closed string, and it is a boundary of the union of four plaquettes in the middle. γ̂ is a closed string,
but it is not a boundary of any union of plaquettes

Then, again, by the definition of the string operator and Xv, we know

Zγ Xv =

 · · ·︸︷︷︸
Z’s far away from v

Z6Z5Z2Z1

(X1X2X3X4) (8)

=(Z2Z1)(X1X2X3X4)(· · ·Z6Z5) (9)
=−Z2 (X1X2X3X4)(· · ·Z6Z5Z1) (10)

=(−1)2 (X1X2X3X4)(· · ·Z6Z5Z1Z2) (11)
=XvZγ (12)

We can use similar arguments for closed dual string γ̂

Lemma 1.9. An element g ∈ G2n2 commutes with every element of Sn if and only if g is a composition of closed string
operators. In other words, closed string operators generate the group of logical Pauli operators on the toric code Cn,
where logical Pauli operators are the Paulis commute with all stabilizers

Sketched Proof of ??. The “if” direction directly follows the previous lemma.
To complete the proof, we only need to check the “only if” direction. First of all, one needs to check “if g does

not commute with some plaqutte ZP0 , then there exists a different plaquette P1 ̸= P0 such that g does not commute with
ZP1 either.”

Similarly, if g does not commute with some Xv0 , then there must exist some v1 ̸= v0 such that g does not commute
with Xv1 either.

Using these facts, one can show g is not a composition of closed string operators.

Remember, our goal is to show dimCn = 4 = 22 and dist(Cn) = n. To show dimCn = 4 = 22, it suffices to show

π(⟨Sn⟩)⊥/π(⟨Sn⟩)≃ F2
2 ⊕F2

2 (13)

Definition 1.10 (Boundary). A string γ is a boundary if it is closed and can be identified as the boundary of the union
of some plaquettes.

Example 1.11 (??). Let’s consider the following two closed strings γ,γ ′ (purple line and light blue line, respectively)

Lemma 1.12. A closed string operation Zγ acts non-trivially on Cn if and only if γ is not a boundary

Theorem 1.13. A group of non-trivial Pauli logical errors is generated by the following 4 string operations
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Figure 12: γ1,γ2 are some closed strings (light blue lines). γ̂1, γ̂2 are some closed dual strings (purple lines)

Corollary 1.14. The smallest non-trivial Pauli logical error on Cn requires us to apply a cycle of X’s or Z’s that wind
all the way around the torus. The smallest such thing involves n qubits. Therefore, the distance of the code is n. In
particular, Cn encodes 2 logical qubits.

Can we generalize toric code to encode more logical qubits? The answer is yes, but we need a higher genus surface.
Here are two examples

Figure 13: Double Torus and Triple Torus. They encode 4 and 6 logical qubits, respectively. In general, n-ple torus
encodes 2n logical qubits
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