
CS 593/MA 592 - Intro to Quantum Computing
Spring 2024

Tuesday, January 16 - Lecture 2.1
Today’s scribe: Xiaoyu

Reading: Subsections 2.1.7-2.1.9 of Nielsen and Chuang. You should also be wrapping up the front matter and
Chapter 1.

Agenda:

1. Bra-ket notation

2. Definition and properties of tensor products

3. Simultaneous diagonalizability theorem

1 Bra-ket notation

1.1 Definitions and relation to the dual Hilbert space
We sometimes call vectors in a Hilbert space kets, and will denote them using the notation |x⟩. Here x is just a
label/variable name for the ket/vector. Note that there is nothing to define here. Indeed, this really is just notation, no
different from how we might write vectors as x⃗ in a multivariable calculus class.

For example, if A : H → H is a Hermitian operator with an eigenvalue λ , we might write |λ ⟩ to denote an
eigenvector of A with eigenvalue λ . Then A |λ ⟩= λ |λ ⟩. Pretty convenient!

We use bra-ket notation to represent the inner product:

⟨x|y⟩ := ⟨|x⟩||y⟩⟩.

While kets and bra-kets are “just” notation, and since a ket is half of a bra-ket, one might wonder what the “other
half” of a bra-ket really is. These are called bras, but they are not “just” notation, they require a definition.

Given any Hilbert space H , the dual space H ∗ is defined to be the vector space

H ∗ := { f : H → C| f linear and bounded}.

Here f is bounded if the (operator) norm of f is not infinity:

∥ f∥ := inf
|ψ⟩∈H −{0}

∥ f |ψ⟩∥
∥|ψ⟩∥

< ∞.

If H is finite-dimensional, then all linear maps f : H →C are bounded, so don’t worry too much about understanding
the word “bounded” if you haven’t already heard about it before.

It is easy to check that H ∗ is a vector space. It turns out that the vector space H ∗ can be equipped with a unique
inner product whose length function agrees with the operator norm, and moreover, the resulting complex inner product
on H ∗ is complete. In other words, we can make H ∗ into a Hilbert space (in a canonical way, in fact). The abstract
details of this aren’t so important for us, because of what I’m about to say.1

1Here is the summary version, if you’re interested: the operator norm on H ∗ turns it into a so-called Banach space (roughly, a vector space
with a notion of length, but not necessarily with a notion of angle/inner product). Moreover, this length function satisfies the polarization identity,
which allows us to define a unique inner product whose length function agrees with the given length function. See Exercise
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In mathematics, the elements of H ∗ are often called (bounded) linear functionals on H , but we will do as in
physics, and call them bras (or dual vectors). Given any ket |ψ⟩ ∈ H , there is an obvious way to write down a bra,
denoted ⟨ψ| and defined as follows:

⟨ψ| : H → C
|φ⟩ 7→ ⟨ψ|φ⟩.

In fact, this construction gives rise to a “canonical” map between H and H ∗ :

Φ : H −→ H ∗

|ψ⟩ 7−→ ⟨ψ|

The Riesz representation theorem says (in particular) that Φ is a bijection. You will prove this in the finite dimensional
case on HW1. (The proof in the infinite dimensional case requires analysis—in particular, one has to use the fact that
Hilbert spaces are complete.)

Note that even though Φ is a bijection, it is not linear—it is actually conjugate linear:

Φ(c |ψ⟩) |φ⟩= c∗ ⟨ψ|φ⟩ ̸= c⟨ψ|φ⟩

for any scalar c ∈ C with non-zero imaginary part.

1.2 Outer products and operators in bra-ket notation
The bra-ket notation is especially useful because we can combine bras and kets in the “wrong order” and get something
helpful. In the “correct” order we get the usual inner product

H ∗×H → C

(⟨φ | , |ψ⟩) 7→ ⟨φ |ψ⟩ .

In the “wrong” order we get the outer product

H ×H ∗ −→ B(H )

(|ψ⟩ ,⟨φ |) 7−→ |ψ⟩⟨φ | ,

where, by definition, |ψ⟩⟨φ | is the linear operator

|ψ⟩⟨φ | : H −→ H

|x⟩ 7−→ |ψ⟩⟨φ |x⟩ .

In Homework 2, you will show that the outer product gives rise to an isomorphism H ⊗H ∗ → BH (note that the
× is now a ⊗).

Example. On the space C2 = spanC{|0⟩ , |1⟩}, we have

|0⟩⟨0| .=
[

1 0
0 0

]
.

|1⟩⟨0| .=
[

0 0
1 0

]
.

Similar for |0⟩⟨1| and |1⟩⟨1|. Thus, we have[
a b
c d

]
= a |0⟩⟨0|+b |0⟩⟨1|+ c |1⟩⟨0|+d |1⟩⟨1| .
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More generally, if we write the operator
A : Cd → Cd

as the matrix A = (ai j) with respect to the standard basis of Cd , then we have

A =
d−1

∑
i=0

ai j |i⟩⟨ j| .

Example. I : Cd → Cd can be written as

I =
d−1

∑
i=0

|i⟩⟨i| .

Example. If D = diag(λ0, . . . ,λd−1) : Cd → Cd , then

D =
d−1

∑
i=0

λi |i⟩⟨i| .

2 Tensor Products

2.1 Tensor product of Hilbert spaces
I will define the tensor product ⊗ using orthonormal bases.

Let V be a Hilbert space with orthonormal basis B1 = {v1, . . . ,vm}, and W be another Hilbert space with B2 =
{w1, . . . ,wn}.

Then the tensor product is defined to be the Hilbert space V ⊗W with orthonormal basis given by

{|vi⟩⊗
∣∣w j

〉
: 1 ≤ i ≤ m, i ≤ j ≤ n}

satisfying the following rules:

1. For all z ∈ C,
z
(
|vi⟩⊗

∣∣w j
〉)

= (z |vi⟩)⊗
∣∣w j

〉
= |vi⟩⊗

(
z
∣∣w j

〉)
.

2. For all 1 ≤ i ≤ m, 1 ≤ j ≤ m, 1 ≤ k ≤ n,(
|vi⟩+

∣∣v j
〉)

⊗|wk⟩= |vi⟩⊗ |wk⟩+
∣∣v j

〉
⊗|wk⟩ .

Similarly, for all 1 ≤ i ≤ m, 1 ≤ j,k ≤ n,

|vi⟩⊗
(∣∣w j

〉
+ |wk⟩

)
= |vi⟩⊗

∣∣w j
〉
+ |vk⟩⊗ |wk⟩ .

We can check, that {vi ⊗wk : i,k} really is a basis. The inner product on V ⊗W is defined so that this is a orthonormal
basis.

Sometimes we might write |vi,wk⟩ for |vi⟩⊗ |wk⟩.
The curse of dimensionality. Observe that dimV ⊗W = (dimV )(dimW ) . For example, for a n-qubit quantum

memory, dim
(
C2

)⊗n
= 2n. This is a big part of reason why simulating quantum systems with classical computers is

typically very difficult.
Binary Representation of Qubit States. Note that even though we defined the tensor product of Hilbert spaces

of V and W by using bases, if the bases are ordered, then there is still not really a natural way to order the basis of
V ⊗W . But it’s really helpful to have ordered, because matrix representations of operators are made with respect to
ordered bases (not unordered ones).
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So, we will typically use the convention that if {v0,v1, . . . ,vn−1} and w0, . . . ,wm−1 are ordered bases of V and W ,
respectively, then the basis {vi ⊗w j} is ordered “lexicographically”2, meaning it looks like this:

v0 ⊗w0,v0 ⊗w1, . . . ,v0 ⊗wm−1,v1 ⊗w0, . . . ,v1 ⊗wm−1, . . . ,vn−1 ⊗w0, . . . ,vn−1 ⊗wm−1.

Of course, we can iterate this construction for a big tensor product of lots of Hilbert spaces: V0 ⊗V1 ⊗·· ·Vk−1.
This is especially useful for understanding states on qubits, since it means that our preferred ordered basis for a

system of n qubits is

|0⟩⊗ |0⟩⊗ · · ·⊗ |0⟩, |0⟩⊗ |0⟩ · · ·⊗ |1⟩, . . . , |1⟩⊗ |1⟩⊗ · · ·⊗ |0⟩, |1⟩⊗ · · ·⊗ |1⟩.

I said that somtimes we would write |vi,w j⟩ instead of |vi⟩⊗ |w j⟩. If we do this to the above basis, then we get

|0, . . . ,0⟩, |0, . . . ,1⟩, |1,1, . . . ,0⟩, |1, . . . ,1⟩.

In particular, we will often conflate (C2)⊗n with C2n
via the preferred/standard isomorphism

(C2)⊗n → C2n

|in−1, in−2, . . . , i1, i0⟩ 7→ |in−1in−2 · · · i1i0⟩

where in−1in−2 · · · i1i0 is understood to be the binary expansion of some number 0 ≤ b ≤ 2n −1, namely,

b =
n−1

∑
k=0

ik2k.

This allows us to do a very convenient thing. A priori, a vector |x⟩ in (C2)⊗n looks like a big multi-sum:

|x⟩=
1

∑
i1=0

. . .
1

∑
in=0

zi1,...,in |i1⟩⊗ . . .⊗|in⟩ .

But now we can rewrite this as

|x⟩=
2n−1

∑
b=0

zb |b⟩ .

Example. Let |x⟩= |0⟩+ |1⟩ ∈ C2, |y⟩= |0⟩− |1⟩ ∈ C2, then

|x⟩⊗ |y⟩= (|0⟩+ |1⟩)⊗ (|0⟩− |1⟩)
= |00⟩− |01⟩+ |10⟩− |11⟩ .

2.2 Tensor product of operators
Not only can we define tensor products of Hilbert spaces—we can also define tensor products of operators between
Hilbert spaces.3 This is sometimes called the Kronecker product when expressed using matrices.

Let {vi} and {w j} be orthonormal bases of V1 and W1, and let A : V1 → W1,B : V2 → W2 be two operators. Then
we define A⊗B : V1 ⊗V2 →W1 ⊗W2 by requiring that

(A⊗B)(vi ⊗w j) = (Avi)⊗ (Bw j).

Alternatively, we can define A⊗B using a block matrix:

A⊗B =


A11B A12B . . . A1mB
A21B A22B . . . A2mB

...
...

...
...

Am1B Am2B . . . AmnB

 .

2also called the “dictionary” ordering
3Tensor product gives a bifunctor on the category whose objects are Hilbert spaces and whose morphisms are (bounded) maps between Hilbert

spaces.
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Example.

Z ⊗X =

[
1 0
0 −1

]
⊗
[

0 1
1 0

]
=


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 ̸= X ⊗Z.

3 Simultaneous diagonalization
Given A,B : H → H , their commutator is [A,B] = AB−BA. We say A,B are simultaneously diagonalizable if there
exists an orthonormal basis of H , with respect to which both A and B are diagonal.

Theorem 1 (Simultaneous diagonalization). Let A,B be two normal operators. A,B are simultaneously diagonalizable
iff they commute.

Proof. The ⇒ direction is trivial.
For the ⇐ direction, see the book for the full argument (at least in the case that A and B are Hermitian—I don’t

remember if the book’s argument works for the general case of normal operators). We will make a simplifying
assumption: all of the eigenspaces of both A and B are one-dimensional.

Now assume that AB = BA. Since A and B are both normal, we can diagonalize both of them:

A = ∑λi|λi⟩⟨λi|
B = ∑λ

′
i |λ ′

i ⟩⟨λ ′
i |

We have
AB |λi⟩= BA |λi⟩= Bλi |λi⟩= λiB |λi⟩ .

Thus, B|λi⟩ is an eigenvector of A with eigenvalue λi. Since we are assuming the eigenspaces of A are all 1-
dimensional, there must exist a scalar bi such that B |λi⟩ = bi |λi⟩. But this means that |λi⟩ is an eigenvector of B
with eigenvalue bi! Since we are also assuming that the eigenspaces of B are all 1-dimensional, this means there exists
a unique index ji such that λ ′

ji = bi and |λ ′
ji⟩= |λi⟩. In other words

B∑
j

λ
′
j|λ ′

j⟩⟨λ ′
j|= ∑

i
bi|λi⟩⟨λi|.

Thus B is diagonal with respect to the same basis as A.
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