
CS 593/MA 592 - Intro to Quantum Computing
Spring 2024

Tuesday, February 13 - Lecture 6.1
Today’s scribe: Mohamed Eltohfa

Reading:
Agenda:

1. Phase kickback

2. Unstructured search

3. Grover’s algorithm

4. Multiple solutions (covered in more detail in next lecture)

1 Phase Kickback
Previously, we mentioned that a Boolean function

F : {0,1}n →{0,1}

can be encoded into a unitary in two ways: a dilated gate that uses an ancilla qubit to encode F into a permutation of
the computational basis vectors:

|x⟩
UF

|x⟩

|a⟩ |a⊕ f (x)⟩

or a “diagonal” gate that does not use an ancilla qubit and encodes F(x) in the phase

|x⟩ RF (−1)F(x)|x⟩

Claim. Over some universal gate set, circuits with oracle access to UF can simulate RF and vice versa.

Proof. We’ll just do one direction. (We’ll do the other one later, after we’ve discussed phase estimation.)
To simulte RF using UF , simply use the following circuit C (compare to Deutsch-Jozsa algorithm)

|x⟩
UF

(−1)F(x) |x⟩

|0⟩ X H H X |0⟩

1

This simulates R f , in the sense that when the ancilla is set of |0⟩, we get

C |x1, · · · ,xn,0⟩= (−1)F(x) |x1, · · · ,xn,0⟩= RF |x1, · · · ,xn⟩⊗ |0⟩ .

Take-away: quantum access to UF is as sensible as quantum access to RF (in practice, both are unrealistic, at least
at this level of generality!).

2 Unstructured Search
Suppose we are given oracle access to

F : {0,1}n →{0,1}= {NO,Y ES},

for example,

F : {possible passwords for a specific username}→ {0,1}= {WRONG,CORRECT}

which has #F−1(1) = 1, i.e., only one correct password. Q: How many calls to F must we make to guarantee that we
find x, the correct password? A: if #F−1(1) = 1, then it’s not too hard to show that 2n calls are necessary classically
(at leaset deterministically; probabilistically should be the same). On the other hand, as we shall see shortly, Grover’s
algorithm shows that at most 2n/2 =

√
2n calls suffice if we have quantum access to F . (That means that quantum

password checking functions are easier to crack, so don’t use them, just use classical password checking functions!).
For example, F could come from a Boolean circuit, where we know that CSAT is NP-complete. The Strong Ex-

ponential Time Hypothesis (SETH) says that any NP-complete problem is expected to have running time 2n, where
n is the length of an instance. (In particular, SETH implies that P ̸= NP). The SETH is remarkable because it says
solving NP-complete problems is no easier than unstructured search. Grover’s algorithm “violates” the SETH (except
not really, because quantum oracle access vs classical oracle access is an apples vs oranges comparison). So, despite
“violating” SETH, Grover’s algorithm CANNOT give a polynomial time quantum algorithm for NP-complete prob-
lems. Note if there are m inputs such that F(x) = 1, then Grover’s algorithm only requires O(2n/2/m) calls to the
oracle, and in fact, this is optimal, which we show in the next lecture.

For what it’s worth, the mainstream ideology of CS theory is that the following picture is correct, with all of the
classes distinct:

2

P

NP

BQP

PP

PSPACE

3 Grover’s Algorithm
Suppose we have an F with only one winner w (i.e., F(w) = 1 for a unique w) and oracle access to F through RF (see
circuit above). How can we use RF to find w? We might guess that we should feed (like we usually do) the equal
superposition

|ψ⟩= 1
2n/2

2n−1

∑
x:=0

|x⟩

(which of course, we can prepare using H⊗n) into RF to get the state:

RF |ψ⟩= 1
2n/2

2n−1

∑
x=0

(−1)F(x) |x⟩=− |w⟩
2n/2 +

1
2n/2 ∑

x ̸=w
|x⟩ .

But what did R f do to |ψ⟩?
Let us define the (unnormalized) state ∣∣∣w⊥

〉
=

1
2n/2 ∑

x ̸=w
|x⟩ ,

which is orthogonal to |w⟩.
Geometrically, RF reflects |ψ⟩ across the w⊥ axis in the “w,w⊥” plane, as shown in the figure below.
This does not “help”! But at the very least, it did not hurt. (Note even though in the picture RF seems to make |ψ⟩

even further from w, considered as quantum states (which are only distinct up to global phases), RF |ψ⟩ is exactly as
close to |w⟩ as |ψ⟩.)

But maybe we can do something else to RF |ψ⟩ to move it closer to |w⟩?. . . What if we reflect it across |ψ⟩ now?
Call this operation R|ψ⟩.

3

|w⟩

θ0/2
θ0/2

θ0 ∣∣w⊥〉
|ψ⟩

RF |ψ⟩

R|ψ⟩RF |ψ⟩

You might notice in the figure that we are assuming |ψ⟩ is closer to
∣∣w⊥〉 than to |w⟩. Well, this is correct as long

as n > 1, because there is only one w with f (w) = 1, but ψ is the equal superposition of all x ∈ {0,1}n.1 In particular,
if we apply R|ψ⟩RF to |ψ⟩, we move closer to |w⟩ by angle θ0. We call R|ψ⟩RF the Grover iteration or Grover operator.
The basic idea of Grover’s algorithm is that if we apply R|ψ⟩RF the “correct” number of times—let’s call this number
r—then we can move |ψ⟩ to be very close to |w⟩.2

To make this work, we need to understand two things:

1. That we can implement R|ψ⟩ with a quantum circuit, and

2. What r is, which will essentially amount to understanding all the angles in the figure.

Let’s address the first point first. Note that R|ψ⟩ has nothing to do with either RF or |w⟩. In the w,w⊥ plane, we can
describe R|ψ⟩ by:

R|ψ⟩ = 2 |ψ⟩⟨ψ|− I= 2H⊗n |0⟩⟨0|H⊗n − I= 2H⊗n |0⟩⟨0|H⊗n −H⊗nIH⊗n = H⊗n(2 |0⟩⟨0|− I)H⊗n

We know how to implement H⊗n, so it remains to show how to implement Rg := 2 |0⟩⟨0|− I with a quantum circuit.
As a sanity check, note that Rg is in fact a unitary on all of (C2)⊗n; in fact, Rg is exactly the “phase oracle” for the
Boolean function g where

g : {0,1}n →{0,1}
0 7→ 0

0 ̸= x 7→ 1

In other words, g(x1, · · · ,xn) = OR(x1, · · · ,xn) = OR(x1,OR(x2, · · · ,xn)) is a big OR of all its inputs. Obviously we
can implement this using a classical Boolean circuit with n− 1 many standard 2-ary OR gates. Thus: Rg can be
implemented with a quantum circuit of size poly(n).

Now let’s address the second point, which is arguably more interesting. From the figure, θ0 is twice the angle
between |ψ⟩ and

∣∣w⊥〉. We can use the inner product to figure out this angle. In general,

cos∠(u,v) =
| ⟨u|v⟩ |
∥u∥∥v∥

.

For our case,

θ0 = 2arccos(
|
〈
ψ
∣∣w⊥〉 |

∥ψ∥
∥∥w⊥

∥∥).
1The angle θ0/2 in the figure is exaggerated for clarity but it’s actually very small. Then again, it is not too small, and this pedantic sounding

point, in fact, is exactly why Grover’s algoirthm works as well as it does!
2Note that we cannot just pick r “really” big like r = 2n, since then we will rotate |ψ⟩ too far!

4

We have ∥ψ∥= 1, ∥∥∥w⊥
∥∥∥=

√〈
w⊥

∣∣w⊥
〉
=

√
2n −1

2n =

√
1− 1

2n

, and |
〈
ψ
∣∣w⊥〉 |= 2n−1

2n . So,

θ0 = 2arccos(

√
1− 1

2n),

from which we get (using trigonometry)

sin2(θ0/2) =
1
2n .

Now using the Taylor expansion for arcsin

θ0 = 2arcsin(

√
1
2n) = 2

√
1
2n +O(2−3n/2) = Θ(

1
2n/2)

On the other hand, the angle between |ψ⟩ and |w⟩ is essentially 90◦ (but not exactly, otherwise the Grover iteration
would not make any progress)! Angle ∠(|ψ⟩ , |w⟩) satisfies

∠(|ψ⟩ , |w⟩) = π

2
− θ0

2
=

π

2
−Θ(2−n/2)

Each application of R|ψ⟩RF rotates the plane by θ0. So, if we do this operation exactly r ∼ 2n/2 times, the angle
between (R|ψ⟩RF)

r |ψ⟩ and |w⟩ will be within 2−n/2 of 0.
Therefore, if we measure (R|ψ⟩RF)

r |ψ⟩ in the computational basis, then with probability greater than 2/3 (there
are some minor fudge factors here), we will get outcome w. Since each application of R|ψ⟩RF requires exactly one call
of RF and r ∼ 2−n/2, this is exactly what we wanted to show!

5

