CS 593/MA 592 - Intro to Quantum Computing
Spring 2024
Tuesday, February 20 - Lecture 7.1

Reading: Appendix 2

Agenda:
1. Groups
2. Cosets, Quotient, etc.
3. Representations

4. Group algebra and regular representations

1 Groups

Intuition: ”A group is an abstract symmetry type”

Definition. A group G is a set with a binary operation

1GxG—=G
that satisfies the following axioms:
1. Associativity

2. There exists an identity element e such that ge = eg = g for all g € G.

l—glg—e¢

3. There exists an inverse for all g € G and g~' € G such that gg~
G is finite if |G| < . We call |G| the order of G. The order of g € G is |g| = min{k > 1|g" = e}.
A subgroup of G is a subset H C G such that:

1. Forallhe H,h™' € H.

2. Forall hy,hp, € H, hih, € H

We write H < G if it is a subgroup.
Given x1, ..., Xx; € G the sub group generated by them is:

<x1,...,xk> = m H

H<G

We call (x) the cyclic subgroup generated by x, since it consists of all powers of x (positive, negative and 0 powers).
Lemma: If g € G, then |g| = |(g)].

Theorem 1 (Lagrange’s Theorem). If H < G, then |H| divides |G]|.

A group G is abelian or commutative, if for all g1,g> € G we have g1g> = g281.-



1.1 Examples of Groups
1.1.1 (Z/NZ,+)

This is the group of addition mod N. It will be of great importance later when N = 2".

L12 ((Z/2Z)",+)

Given ay,.....a, and by, .....by, then (ay,.....a,) + (b1,.....b,) = a1 + by, .....,anb+, where the addition is mod N.
Fact: Every finite abelian group is isomorphic to a group of the form

k
B z/N;zZ
i=1
where the ;s are positive integers. Here, note that if A and B are two groups, then
A®B={(a,b)lacA,bc B}

is also a group. If we apply the Chinese remainder theorem, we can classify finite abelian groups as sums of cyclic
groups of prime power order.

1.1.3 U@d)

This is the unitary group of d x d unitary matrices. Of course |U(d)| = e In fact, it is uncountably infinite. Better
yet,U(d) is a "Lie group” meaning it is both a grup and smooth manifold, and can be understood rather well using its
associated Lie algebra. It also has a subgroup SU(d) C U(d).

U(d) is not abelian unless d = 1.

114 S,

The symmetric group on n elements. That is, the set of all permutations of the set {1,...,n}:
Sp={F:{1,...,n} = {1,...,n} | F is a bijection}.

S, is not abelian unless n = 2.

Definition. A homomorphism is a function
(P G — Gy

such that
¢(xy) = 9 (x)o(y)

for all x,y € Gy. If ¢ is bijective, then it is called an isomorphism.

Theorem 2. (Cayley’s Theorem) Let |G| = n and fix an enumeration of the elements of G, G = {x1,...,x, }, for each
g € G, define
Ly {l,...,n} = {1,...,n}

where j is the unique index such that gx; = xj. Then Lg is a well-defined bijective function. Moreover, the function

G—S,
gL,

is an injective group homomorphism.

Thus, every (finite) group is a subgroup of a permutation group.



1.2 Cosets, etc.
Given H < G and g € G, the left H-coset of g is
gh={ghlh€ H}
Lemma: g|H = g,H iff there exists & € H such that g, = g h.

The set of all left H-cosets is denoted
G/H = {gH|g € G}

Note: G/H is a partition of G in which each part has size |H|. This proves Lagrange’s theorem.
We can also similarly define right H-cosets.

We say H is a normal subgroup if for all g € G, gH = Hg. We denote this H JG.

Theorem. The following are equivalent
s HAG

* The function (G/H) x (G/H) — G/H and (g1H,g:2H) — (g182)H is well defined and makes G/H a group. We
call G/H with this group operation the quotient group (of G by H).

Note for abelian G, all subgroups are normal.

If ¢ : G; — G is a homomorphism, then the kernel is ker ¢ = {x € G1|¢(x) =1}

Theorem 3. (First Isomorphism theorem)
If ¢ : Gi — Gy is a homomorphism, then ¢(G1) < Gy, ker¢ Gy and ¢(G;) = G,/ ker ¢.

2 Representations
Let V be a vector space over the complex numbers C. Define the general linear group of V to be

GL(V) ={F :V — V| F is linear and bijective}.

If V = C" we write GL(n,C) = GL(C").
A representation of a group G on V is a homomorphism

p:G— GL(V)

Suppose
p1:G— GL(V])

p2:G— GL(Vz)
are two representations. We say p; and p; are isomorphic if there exists an isomorphism of vector spaces
b Vi—VW

such that
p2(g) = Pops(g) o



for all g € G. In other words for all g € G the following diagram commutes:

Vi p(g) Vi

q{ }p
V2 >@ V2

A representation p : G — GL(v) is unitary if V is a finite-dimensional Hilbert space and p(G) CU(V) C GL(V).
Lemma: Every representation over C of a finite group is isomorphic to a unitary representation.

Goal of representation theory:
1. Classify the representations of a group.
2. Understand how the representation of G reflects the underlying structure of G.

To this end, there are two types of representations we are interested in:

1. Faithful:
p : G — GL(v) such that p is injective.

2. Irreducible, which we will define momentarily.

Note: Neither property implies the other.

A representation p : G — GL(v) is reducible if there exists a non-trivial, proper W such that p(g)(W) C W for all
g€G.

An irreducible representation is a representation that is not reducible and not O0-dimensional. We often call these
“irreps.”

Lemma: Every 1-dimensional representation is an irrep.

In particular, the trivial 1-dimensional representation
p:G—GL(C)=C*=C-{0}
g—1
is always irreducible.

Definition. A conjugacy class if G is a subset of C C G such that
C={xgx !xeG}
for some g € G.

Theorem 4. If G is a finite group, then the number of complex irreps of G (considered up to isomorphism) equals the
number of conjugacy classes of G.

The best way to prove this is by using “character theory”. Given any representation p : G — GL(v), the character
of pis
Trp:G—C
g Tr(p(g))

Note: T'rp is not a homomorphism. (It us a “class function,” meaning it is constant on the conjugacy classes of G.)



Moreover, given any rep p : G — GL(v), there exists a unique collection of irreps py, ..., px (possibly with multi-
plicities) such that

k
p=Dpi
i=1
Corollary: If A is abelian, then it has |A| many irreps.
Lemma: If A is abelian and p : G — GL(v) is irrep, then dimV = 1.

Proof: By prior lemma, we can assume p is unitary. In particular for all a € A, p(a) is unitary. However, we
know that unitary matrices are diagonalizable. Since A is Abelian, the p(a) are simultaneously diagonalizable. Now,
let B = {¥i,...,v,} be basis for which we have a diagonal representation for each i = 1,...,n in the one-dimensional
subspace. Clearly span{¥;} is invariant under the A action. Because p is assumed to be irreducible, we conclude that
v; must span all of V. In other words, V is 1-dimensional, as desired.

Thus, the irreps of an abelian group A are the same thing as a homomorphism A — U(1).

Definition. . If A is a (finite) abelian group, then the dual group is the set of all irreducible representations of A:
A :=Hom(A,U(1))
The group operation is defined as follows. Given
p1:A—=U(1)

p2:A—=U(1)

define
PP A—=U(1)

a pi(a)p2(a)
Theorem 5. (Pontryagin duality) Let A be a finite abelian group, then

1. ® makes A into an abelian group.

2. A = A (But NOT naturally)

3. A=A (Naturally)



