
CS 593/MA 592 - Intro to Quantum Computing
Spring 2024

Tuesday, February 27 - Lecture 8.1
Today’s scribe: Nico

Agenda:

1. Quantum Simulation

2. The Heisenberg Model

Intended to cover the Ising model, but did not get to it.

1 Quantum Simulation
Given a “reasonable” description of a (discrete) quantum mechanical system, we expect that we can simulate the
system on a quantum computer. This expectation comes from the classical case. We can simulate classical mechanical
systems on classical computers pretty well.

In the classical setting, we have two main ways to describe dynamical systems:

Newtonian Mechanics: We have a description of a force vector F⃗ on space. To simulate time evolution/dynamics,
we use Newton’s equation

d
dt

(
m

d⃗x
dt

)
= F⃗

which amounts to solving some differential equation.

Hamiltonian Mechanics: Instead of a force vector field, we are given a Hamiltonian H which is a function on phase
space to R. This yields Hamilton’s equations: {

dq⃗
dt =

∂H
∂ p⃗

d p⃗
dt =− ∂H

∂ q⃗

In quantum mechanics, we use the quantum version of Hamiltonian mechanics. According to Schrödinger, for
a quantum mechanical system with state space V , the time evolution is controlled by a (quantum) Hamiltonian H ,
which is a Hermitian operator V →V , thought of as the energy observable. The axioms of quantum mechanics tell us
that the Hamiltonian generates the dynamics of a quantum mechanical system via Schrödinger’s equation:

iℏ
∂

∂ t
|ψ⟩= H |ψ⟩

Thus, given an explicit description of H , simulating the corresponding quantum mechanical system requires that we
(exactly/numerically/approximately according to our goals) solve this differential equation.

In all of these cases, ideally we would like to be able solve these differential equations explicitly by finding exact
analytic solutions. But this is generally not possible even classically (e.g. the three-body problem). So, instead of
solving, we try to simulate the dynamics using a computer.

The simulation takes in some inputs (initial state, initial time, and accuracy δ > 0) and yields an output which
is an approximation of the time evolved state after some time t to within δ -accuracy. Classically, this can be done
by discretizing using various methods (finite element method, etc.), but quantum mechanically, this is trickier. In
fact, we don’t really have any better of a way to store quantum states on a classical computer besides just storing

1

each amplitude in the computational basis individually. This makes simulation via discretizing states on a classical
computer extremely costly.

Not only is discretizing states costly, but in general discretizing the Hamiltonian H is costly as well! Luckily,
however, most Hamiltonians encountered in physics are “local”, i.e. they are made up of smaller Hamiltonians which
only act on a bounded number of particles at a time.

Any Hamiltonian H may be decomposed in the following way:

H = ∑
S⊂{x1,...,xn}

HS

where xi is a qubit, and HS is a Hermitian operator on S, extended to all of {x1, . . . ,xn} by tensoring with the
identity.

Example: Let n = 6 and let S = {x1,x2,x4}, then we could let HS be given by:

HS = X ⊗ (X +Z)⊗ Id ⊗Z ⊗ Id⊗2

or
HS =CNOT ⊗ Id ⊗ (X −Z)⊗ Id⊗2

To remedy these issues, Yuri Manin and Richard Feynman proposed that we simulate quantum systems on quantum
computers.

1.1 The Heisenberg Model
Consider a “spin chain” comprised of tiny spins or magnets:

· · ·
1 2 n−1 n

Each spin can be either up or down or in a superposition of both. We can write

|up⟩= |1⟩ |down⟩= |0⟩

and thus we can say that our spin chain is really comprised of n qubits, and thus the state space of our spin chain is
(C2)⊗n.

We imagine the neighboring spins are coupled in a ”translation invariant way.” We do this by choosing coupling
constants (Jx,Jy,Jz) ∈ R3 and defining

Hint =−
n−1

∑
j=1

JxX jX j+1 + JyYjYj+1 + JzZ jZ j+1

where U jU j+1 means Id⊗ j−1 ⊗U ⊗U ⊗ Id⊗n− j−1.

We also may have an external magnetic field affecting our chain, say in the z-direction, described by

Hext =−
n

∑
j=1

hZ j, h ∈ R

2

Then we may define
H = Hint +Hext

This is the Heisenberg model (for an (anti)ferromagnetic spin chain). As usual, the eigenvalues of H are the
possible energy levels for our quantum “magnet” (which may not be a magnet at all!).

Some natural questions may arise:

• What are the energy levels for a given tuple of coupling constants?

• What is the lowest energy level (aka the ground state)?

• What about phase transitions?

We can get an intuition for the energy states by looking at a specific example:

Suppose J = Jx = Jy = Jz, then we call the resulting spin chain the XXX chain. When J > 0, then low energy
configurations are “ferromagnetic” meaning the spins are aligned. I.e. our states might look like α|0 · · ·0⟩+β |1 · · ·1⟩.
When J < 0, the configurations are “anti-ferromagnetic” which means that the neighboring spins are opposite on
average. You should be thinking of states that look like α|10 · · ·10⟩+β |01 · · ·01⟩ (if n is even). For a more thorough
analysis of this stuff, you might look up the phrase ”Bethe ansatz.”

1.2 Back to Simulation
Assume that we have a Hamiltonian on (C2)⊗n

H =
L

∑
k=1

Hk

where L is a polynomial in n and each Hk is c-local meaning it is supported on at most c of the n qubits. H is called
a c-local Hamiltonian on n qubits.

We would like to simulate the dynamics given by H . I.e. given a state |ψ⟩, a time t, and an accuracy δ > 0, we
want to use a quantum computer to prepare a state |φ⟩ which “approximates the time evolution,” i.e. is close to the
true time evolution eitH |ψ⟩ in that ∣∣∣⟨φ |eitH |ψ⟩

∣∣∣2 ≥ 1−δ .

Moreover, we’d like to do all of this as efficiently as possible in terms of the parameter n, t, and δ .
The main trick to accomplishing this is sometimes called “Trotterizing.”

Lemma 1 (Trotter Formula). For A,B Hermitian, t ∈ R,

lim
n→∞

(exp(iAt/n)exp(iBt/n))n = exp(i(A+B)t)

Proof.

lim
n→∞

(exp(iAt/n)exp(iBt/n))n = lim
n→∞

[(
I +

iAt
n

+O(1/n2)

)(
I +

iBt
n

+O(1/n2)

)]n

= lim
n→∞

[
I +

i(A+B)t
n

+O(1/n2)

]n

= lim
n→∞

[
n

∑
k=0

(
n
k

)
1
nk

(
i(A+B)t

)k
+O(1/n)

]

3

The last equality comes from using the Binomial theorem.
Note that (

n
k

)
=

1+O(1/n)
k!

so

lim
n→∞

(exp(iAt/n)exp(iBt/n))n = lim
n→∞

[
n

∑
k=0

1+O(1/n)
k!

(
i(A+B)t

)k
+O(1/n)

]

= ∑
k≥0

1
k!
(
i(A+B)t

)k

= exp(i(A+B)t)

Claim 1. Fix c ∈ N. Given a c-local Hamiltonian on n qubits

H =
L

∑
k=1

Hk

, a state |ψ⟩ and an accuracy δ > 0, there is a quantum algorithm to prepare a state |φ⟩ such that∣∣∣⟨φ |eitH |ψ⟩
∣∣∣2 ≥ 1−δ .

Moreover, the algorithm runs in time O(poly(1/δ), t,n).

Proof Sketch. Since c is fixed, we might as well assume that our gate set includes all c-ary gates. Thus, we can assume
that we can implement arbitrary c-ary gates in one unit of time. In particular, for all s, it takes only one unit of time to
implement exp(isHk). Pick s appropriately (given t and δ) and let U be the following circuit, which we describe only
schematically:

...
...

...
...

...· · ·n eisH1 eisH2 eisHL

This is “schematic” in the sense that each “gate” here is really a subcircuit that should consist of a single c-ary gate on
an appropriate choice of c of the n qubits, according to Hi.

It is straightforward to verify that ∥∥∥exp(itH)−U⌈t/s⌉
∥∥∥< δ .

This implies what we want.

4

