
CS 593/MA 592 - Intro to Quantum Computing
Spring 2024

Tuesday, January 23 - Lecture 3.1
Today’s scribe: Eduardo

Reading: Subsection 2.2 of Nielsen and Chuang.

Agenda:

1. Projective measurements

2. Quantum state tomography

3. Distinguishing states

4. Uncertainty principle

5. Global phases and complex projective space

1 Projective measurements (Born rule)
Last time we saw that a projective measurement is a self-adjoint operator, i.e.,

M∗ = M.

Thus, we can write its spectral decomposition
M = ∑

i
λiPi,

where λi are the distinct eigenvalues and Pi are the orthogonal projections onto the λi subspace.
The outcomes of this measurement are the λi eigenvalues. The probability of seeing these eigenvalues given that

we are on a state |ψ⟩ are

Pr(λi||ψ⟩) = ⟨ψ|Pi|ψ⟩
⟨ψ|ψ⟩

(1)

which is basically the normalized size of |ψ⟩ on the λi eigenspace.

Examples. Measuring in the computational basis of n qubits

1. Let H =
(
C2
)⊗n and M = ∑

2n−1
b=0 b|b⟩⟨b|.

Observe that if n = 1

M =

[
0 0
0 1

]
,

and if n = 2

M =


0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

 .
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Note that M is already diagonal in the computational basis. The outcomes if we measure M are its eigenvalues,
i.e.,

{0,1,2, . . . ,2n −1}.

What is Pr(i||ψ⟩) if |ψ⟩= ∑i zi|i⟩ ̸= 0⃗? By applying Equation (1) we get

Pr(i||ψ⟩) = ziz∗i
∑ j z jz∗j

. (2)

2. Suppose n = 1 and

|ψ⟩= 3|0⟩− i|1⟩√
7

.

Then, by applying Equation (2) we get

Pr(0||ψ⟩) =
3·3∗

7(
3√
7

)(
3√
7

)
+
(

−i√
7

)(
i√
7

)
=

9
7

9
7 +

1
7

=
9

10
.

Note that we get for free

Pr(1||ψ⟩) = 1−Pr(0||ψ⟩)

=
1

10
by the complement rule.

Remark. We should stress that the measurement together with the state induces a probability distribution on
the set of all bit strings that is entirely determined by the amplitudes of zi by Equation (2).

3. Recall from last class that

H⊗n|0 . . .0⟩=
(

1√
2

)n 2n−1

∑
b=0

|b⟩,

where H is the Hadamard operator.

In particular,

Pr(i||ψ⟩) = 1
2n ,

where |ψ⟩= |0 . . .0⟩.
Now let θ0, . . . ,θ2n−1 ∈ R, and define

|ψ(θ0, . . . ,θ2n−1)⟩=
1

2n/2

2n−1

∑
b=0

e2π jθb |b⟩.

Note that
|ψ(θ0, . . . ,θ2n−1)⟩ ̸= |ψ⟩,

but it turns out that
Pr(i||ψ (⃗θ)⟩) = Pr(i||ψ⟩).

Thus, if we measure in the computational basis we get the same probability distribution, even though the states
are different. This means that there is more to a quantum state than just the probability distribution on bit strings
we get by measuring in the computational basis.
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2 Quantum state tomography
Quantum state tomography is the procedure of experimentally determining an unknown quantum state. The challenge
lies in the inherently probabilistic nature of observations in quantum systems, where a single copy of a state |ψ⟩ can
only give us one sample of its distribution. How many copies of |ψ⟩ do we need to learn something non-trivial about
its amplitudes (in computational basis) with high confidence?

This is not so different from the problem of estimating the probability of outcomes in an unfair coin. In particular,
how many times do we need to flip the coin to get an approximation of the probability of getting heads or tails? We can
never be certain that we have the best approximation for such probabilities, but we can approach an accurate estimation
within a certain confidence interval.

One might also ask: Is possessing a biased coin equivalent to knowing its bias? Or, does the coin “know” its
own bias? We can argue that knowing the bias is not inherent in the coin; it requires experimentation to extract this
information, and even then, it’s determined only within a certain confidence interval.

In other words, having a quantum state |ψ⟩=∑zi|i⟩ and not knowing the amplitudes zi is similar to having a biased
coin and not knowing what the bias is.

3 Distinguishing quantum states
Suppose |ψ⟩, |φ⟩ ∈ H , where H ∼= Cd .

Question: Is there a (projective) measurement we can perform to distinguish |ψ⟩ from |φ⟩ with certainty in “one
shot” ?

Answer: Yes, if and only if ⟨φ |ψ⟩= 0, i.e., the states are orthogonal. We will prove this statement.
(⇐) Let

M = |ψ⟩⟨ψ|︸ ︷︷ ︸
P1

+2 |φ⟩⟨φ |︸ ︷︷ ︸
P2

.

Observe that M is already written in its spectral form. If we perform a projective measurement of M on a state |x⟩ that
is equal to either |φ⟩ or |ψ⟩ (we will assume that both states are already normalized), then

Pr(1||x⟩) = ⟨x|P1|x⟩

=

{
1, if |x⟩= |ψ⟩,
0, if |x⟩= |φ⟩,

and

Pr(2||x⟩) = ⟨x|P2|x⟩

=

{
0, if |x⟩= |ψ⟩,
1, if |x⟩= |φ⟩.

Thus, performing this measurement will tell us with certainty what |x⟩ is1.
We should note that this is a “bad” answer in the sense that we need to know what states are. Thus, this answer is

more informational-theoretic than algorithmic.
(⇒) By contradiction suppose that ⟨φ |ψ⟩ ≠ 0 and M is an observable with two distinguished outcomes “1” and

“2” such that
Pr(1||ψ⟩) = 1,

Pr(2||ψ⟩) = 0,

1Note that λ = 0 is also an eigenvalue of M, but since |x⟩ ∈ {|ψ⟩, |φ⟩} we will never observe this outcome
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Pr(1||φ⟩) = 0,

and
Pr(2||φ⟩) = 1.

Then,
M|span{|φ⟩,|ψ⟩} = 1 ·P1 +2 ·P2

for some projectors P1 and P2. Note

P1 +P2 = I

= Ispan{|φ⟩,|ψ⟩}.

Applying the Born rule,
Pr(1||ψ⟩) = ⟨ψ|P1|ψ⟩,

Pr(2||ψ⟩) = ⟨ψ|P2|ψ⟩,

Pr(1||φ⟩) = ⟨φ |P1|φ⟩

and
Pr(2||φ⟩) = ⟨φ |P2|φ⟩.

Write
|φ⟩= α|ψ⟩+β |ψ⊥⟩,

where ⟨ψ|ψ⊥⟩= 0, and |α|2 + |β |2 = 1, β ̸= 0 and α ̸= 0. Then,

1 = ⟨φ |P2|φ⟩
= (α∗⟨ψ|+β

∗⟨ψ⊥|)P2(α|ψ⟩+β |ψ⊥⟩)
= α

∗
α ⟨ψ|P2|ψ⟩︸ ︷︷ ︸

0

+β
∗
β ⟨ψ⊥|P2|ψ⊥⟩︸ ︷︷ ︸

1

Thus, |β ∗β |= 1, which implies α = 0. This contradicts our assumption ⟨ψ|φ⟩ ̸= 0.
Note the contrast with the ⇐ direction, where knowing what the states were allowed us to build a measurement M

from which we can distinguish the states with certainty. Here, even knowing the states, there is no way to distinguish
the states with certainty due to the non-orthogonality between |ψ⟩ and |φ⟩.

4 Uncertainty principle
Projective measurements have a very clean formula for expectation values (i.e., averages).

E(M||ψ⟩) = ∑
λ is eigenvalue of M

λPr(λ ||ψ⟩)

= ∑
λ

λ ⟨ψ|Pλ |ψ⟩

= ⟨ψ|

(
∑
λ

λPλ

)
|ψ⟩

= ⟨ψ|M|ψ⟩

In particular, we don’t need to know spectral decomposition of M to compute

E(M||ψ⟩) = ⟨ψ|M|ψ⟩.
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Sometimes, when |ψ⟩ is understood, we write

⟨M⟩ := E(M|ψ⟩).

From this,

Var(M)|ψ⟩ = Var(M)

= E
[
M− (E(M))2

]
= E(M2)− (E(M))2

= ⟨M2⟩−⟨M⟩2

Thus, the standard deviation is
∆(M) = ∆(M)|ψ⟩ =

√
Var(M).

Note. ∆(M)|ψ⟩ = 0 if and only if |ψ⟩ is an eigenvector of M.

Heisenberg uncertainty principle:

For all observables A and B,

∆(A)|ψ⟩∆(B)|ψ⟩ ≥
1
2
⟨ψ|[A,B]|ψ⟩.

Intuitively, this is saying that if we want the product of the two standard deviations of two operators to be small,
then they should be very close to commuting on state |ψ⟩.

Remark. This statement is not saying that performing one measurement affects the outcome of another.

In particular, one can only be ever certain about the outcomes of both A and B on |ψ⟩ if they “commute on |ψ⟩”.
Note that if we are certain about the outcomes of A and B, then ∆(A)||ψ⟩ = ∆(B)|ψ⟩ = 0. This means that |ψ⟩ is an
eigenvector of both A and B, and thus [A,B]|ψ⟩= 0.

5 Global phases and complex projective space
Global phases don’t matter. That is, if |φ⟩ = z|ψ⟩ for some z ∈ C−{0}, then there is no measurement that can
distinguish |φ⟩ from |ψ⟩, and so, we should consider |φ⟩ and |ψ⟩ as the same state 2.

Let M = ∑λPλ be any projective measurement. Then,

Pr(λ ||φ⟩) = ⟨φ |Pλ |φ⟩
⟨φ |φ⟩

=
(z∗⟨ψ|)Pλ (z|ψ⟩)
(z∗⟨ψ|)(z|ψ⟩)

=
⟨ψPλ |ψ⟩
⟨ψ|ψ⟩

= Pr(λ ||ψ⟩).

Thus, if these two distributions are always the same whenever we perform a measurement no matter what the mea-
surement is, it makes sense to regard them as being the same state.

2In particular, this is why we don’t care about normalization because normalization is just multiplying by a non-zero scalar.
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If we consider a qudit Cd , we have said that Cd −{0} is the space where quantum states are allowed to be. Now
we are also saying that two different states that differ by some scalar factor are the same. This means that what really
parametrizes quantum states (and that does so in a one-to-one manner) is the quotient Cd −{0}/C−{0}, which is
exactly the projective space CPd−1, i.e.,

Cd −{0}/C−{0} ∼= CPd−1.

Note that CPd−1 is essentially the set of lines of complex lines in Cd .
Thus, the set of pure states is in fact bijective with the complex projective space. In particular, when d = 2, CP1 is

homeomorphic and isometric with the two dimensional sphere that is called that Bloch sphere.
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