
CS 593/MA 592 - Intro to Quantum Computing
Spring 2024

Thursday, February 1 - Lecture 4.2
Today’s scribe: Anirudh Rao

Reading: Subsections 4.5, 4.6 and Appendix 3 of Nielsen and Chuang.

Agenda:

1. Counting Circuits

2. BQP & Solovay-Kitaev

1 Counting Circuits
Fix a gate set G and let |G |= c. Let’s upper bound the number of different unitaries that we can build out of circuits
on n qubits of length l (that is, using l gates).

For convenience, let’s assume all g ∈ G are k-ary. That is, g : (C2)⊗k → (C2)⊗k. Let’s furthermore assume that
any time g ∈ G , we have that all gates we get from permuting the input/output wires for g are also in G . This means
anytime we want to act with some gate on a choice of k qubits, we might as well assume the qubits enter the gate in
a way that respects the ordering of their indices. Such circuits look like this (where any crossings of wires should be
ignored):

Then clearly we can upper bound the number of such circuits by:

c
(

n
k

)
· c
(

n
k

)
· · · · · c

(
n
k

)
= cl

(
n
k

)l

= O((nc)kl).

If our gate set doesn’t satisfy the properties we imposed, then we can always make G bigger to get it to. Thus this
upper bound works for all gate sets.

However, simply counting the number of unitaries we can implement exactly is not as interesting/pertinent as
counting the number of unitaries we can approximately implement for a given ε > 0.

As a warm-up, let’s consider the following: how big does l need to be for us to be able to guarantee that for any
state |ψ⟩ ∈ (C2)⊗n, we may build a circuit C so that |C|0 · · ·0⟩− |ψ⟩|< ε? Assume |ψ⟩ is normalized. The set of all
such states is the unit sphere S2n+1−1 ⊆ (C2)⊗n.{

|ψ⟩=
2n−1

∑
l=0

zl |l⟩

∣∣∣∣∣2n−1

∑
l=0

|zl |2 = 1

}
= S2n+1−1

1

Our question reduces to the following: What is the minimum number of points on S2n+1−1 required to guarantee
that every point on S2n+1−1 is within ε of one of these points?

N ≥ Area(S2n+1−1)

Area(little, spherical disk D2n+1−1
ε of radius ε)

= Ω

((
1
ε

)2n
)

Thus, we need circuits of length l = Ω

(
2n

logn log
(1

ε

))
to guarantee there exists a circuit C with |C|00 · · ·0⟩− |ψ⟩|< ε

for every |ψ⟩.
In particular, you can now easily argue that that for all ε > 0, there exists a unitary U : (C2)⊗n → (C2)⊗n such that

the smallest circuit C that satisfies Error(C,U)< ε has length Ω

(
2n

logn log
(1

ε

))
.

2 BQP & Solovay-Kitaev
BQP is notation for the complexity class “Bounded error Quantum Polynomial time.” BQP is a complexity class of
decision problems (a.k.a. “yes-no questions”)

L : {0,1}∗ =
⋃
l≥0

{0,1}l →{0,1}= {NO,YES}.

A priori, BQP depends on two parameters: some number 0 ≤ δ ≤ 1 and a gate set G .

Definition. L ∈ BQP(G ,δ) if there exists a classical (deterministic) polynomial-time algorithm which for each bit
string x ∈ {0,1}n outputs a description of a quantum circuit Cx over G such that measuring the first qubit of Cx|0 · · ·0⟩
in the computational basis satisfies

prob(Output(Cx) = L(x))≥ 1−δ .

The 1− δ is the “bounded” part or the “B” of BQP, the quantum circuit Cx is the “quantum” part or the “Q” of
BQP, and the classical polynomial-time algorithm is the “polynomial” part or the ”P” of BQP.1 This is formalizing the
following work flow:

1. Given x.

2. Think hard (but not too hard) about how to build a helpful quantum circuit Cx. (classical part)

3. Use your quantum computer to apply Cx to |0 · · ·0⟩. (quantum part)

4. Reduce from “quantum data” to “classical data” (i.e. YES or NO) by measuring in the computational basis.

If we don’t insist that our circuits Cx are prepared algorithmically, then we might call the complexity class
BQ(G ,δ). But this is a bad class, because BQ(G ,δ) = ALL (assuming G is universal), where ALL is the com-
plexity class consisting of all decision problems. Of course, ALL contains uncomputable problems (in fact, it contains
problems that are strictly harder than the halting problem!). Thus, the insistence that our circuits are prepared algo-
rithmically is important, and often described as a requirement of uniformity in the quantum circuits we use to solve
the problem L.

One might wonder: what if we used a classical probabilitistic algorithm to prepare the circuits Cx? Well, we get
the same class. This is because we can put all of the classical randomness we might use to prepare Cx into the quantum
circuit we prepare. (Assuming we have gates in G that are able to implement classical coin flips.) So we don’t get
anything new.

If we insist Cx only depends on the length of the bit string

|x|= |(x1, . . . ,xl)|= l

1In more etail: since it takes us at most a polynomial amount of classical thinking to decide which quantum calculation Cx to do, then Cx is at
most polynomially large, and thus can be run on our quantum computer in a polynomial amount of time!

2

and we use |x1 · · ·xl0 · · ·0⟩ as input instead of |0 . . .00 . . .0⟩, then we also get the same class.
However, if we drop the algorithmic assumption on finding such a circuit that only depends on |x|, we get the

class BQP/poly, or “quantum polynomial time with classical advice.” While not equal to ALL, BQP/poly still contains
uncomputable problems.

What is δ doing? BQP(G , 0) is a more-or-less sensible complexity class of “zero-sided error” quantum polynomial
time algorithsm. However, the property of having zero-sided error is not stable if we change G . In particular, it is un-
reasonable to expect zero-sided error in a setting where we have to perform error correction. In fact, it is unreasonable
to expect one-sided error (on either side).

On the other hand, for δ ≥ 1/2, BQP(G ,δ) = ALL. You’ll show this on your homework 4.
So 0 < δ < 1

2 seems most appropriate. In fact, once we’re in this range, something nice happens:

Lemma 1. If 0 < δ ≤ δ ′ < 1
2 and G is able to implement a “majority” circuit of arbitrary width, then BQP(G ,δ) =

BQP(G ,δ ′)

Proof. BQP(G ,δ)⊆ BQP(G ,δ ′) is free. To obtain the other containment, we need to “amplify the success probabil-
ity.”

The basic idea is simple. Compute Cx|0 · · ·0⟩ several times, take a survey of all the output bits from each run, and
then elect the majority. The Chernoff bound shows that this works.

The technical thing to think through is how to implement this majority vote with a single quantum circuit. Indeed,
strictly speaking, our definition of BQP does not allow for any “classical post-processing” of our measurements. A
circuit like this is close to doing the trick, but you should think about what details need to be modified to finish the
argument:

The previous lemma shows that when G is universal (really, “universal enough to implement majority” suffices),
the definition of BQP(G ,δ) gives the same class for all 0 < δ < 1/2. To resolve the question of dependency on the
choice of gate set G , we will use the Solovay-Kitaev theorem.

First, a definition. The special unitary group SU(d) is the group of all d ×d unitary matrices with determinant 1:

SU(d) = {U ∈U(d)|detU = 1} ≤U(d).

3

The determinant 1 condition is kind of like saying unitaries with “no global phase.”2

Theorem 2 (Solovay-Kitaev Theorem). Let G ⊂ SU(α) be a finite subset of gates that is closed under inversion
(g ∈ G =⇒ g−1 ∈ G) and densely generates. Then there exists a (classically efficient) algorithm that takes any
”explicit” U ∈ SU(α) and any ε > 0 to a word w = glgl−1 · · ·g2g1, gi ∈ G of length l = O(log

(1
ε

)α
) for some

constant α > 1 and Error(w,U)< ε .

The polynomial dependence on log(1/ε) is actually not important for our next result, but it is important in the
context of error correction and fault tolerance, since it says we get only polylogarithmic overhead in certain error
corection procedures.

Corollary 3. Given 0 < δ < 1
2 , a universal G that is inverse closed and any other gate set G ′: BQP(G ,δ) ≥

BQP(G ′,δ ′) for some 0 < δ ′ < 1
2 .

Definition. Fix any universal gate set G (that is inverse closed) and 0 < δ < 1
2 . Then BQP := BQP(G ,δ).

2Note that SU(d) ̸= PU(d). Indeed, PU(d) is the quotient of U(d) we get by identifying two matrices that differ by a global phase.

4

