CS 593/MA 592 - Intro to Quantum Computing Spring 2024 Tuesday, February 20 - Lecture 7.1

Reading: Appendix 2

Agenda:

- 1. Groups
- 2. Cosets, Quotient, etc.
- 3. Representations
- 4. Group algebra and regular representations

1 Groups

Intuition: "A group is an abstract symmetry type"

Definition. A group G is a set with a binary operation

 $\cdot: G \times G \to G$

that satisfies the following axioms:

- 1. Associativity
- 2. There exists an identity element e such that ge = eg = g for all $g \in G$.
- 3. There exists an inverse for all $g \in G$ and $g^{-1} \in G$ such that $gg^{-1} = g^{-1}g = e$
- G is finite if $|G| < \infty$. We call |G| the order of G. The order of $g \in G$ is $|g| = min\{k \ge 1 | g^k = e\}$.

A subgroup of G is a subset $H \subseteq G$ such that:

- 1. For all $h \in H$, $h^{-1} \in H$.
- 2. For all $h_1, h_2 \in H$, $h_1h_2 \in H$

We write $H \leq G$ if it is a subgroup.

Given $x_1, ..., x_k \in G$ the sub group generated by them is:

$$\langle x_1, ..., x_k \rangle = \bigcap_{H \le G} H$$

We call $\langle x \rangle$ the cyclic subgroup generated by *x*, since it consists of all powers of *x* (positive, negative and 0 powers). **Lemma:** If $g \in G$, then $|g| = |\langle g \rangle|$.

Theorem 1 (Lagrange's Theorem). If $H \leq G$, then |H| divides |G|.

A group G is **abelian** or commutative, if for all $g_1, g_2 \in G$ we have $g_1g_2 = g_2g_1$.

1.1 Examples of Groups

1.1.1 $(\mathbb{Z}/N\mathbb{Z},+)$

This is the group of addition mod N. It will be of great importance later when $N = 2^n$.

1.1.2 $((\mathbb{Z}/2\mathbb{Z})^n, +)$

Given a_1, \dots, a_n and b_1, \dots, b_n , then $(a_1, \dots, a_n) + (b_1, \dots, b_n) = a_1 + b_1, \dots, a_n b_{+n}$ where the addition is mod N. **Fact:** Every finite abelian group is isomorphic to a group of the form

$$\bigoplus_{i=1}^k \mathbb{Z}/N_i\mathbb{Z}$$

where the N_is are positive integers. Here, note that if A and B are two groups, then

$$A \oplus B = \{(a,b) | a \in A, b \in B\}$$

is also a group. If we apply the Chinese remainder theorem, we can classify finite abelian groups as sums of cyclic groups of prime power order.

1.1.3 U(d)

This is the unitary group of $d \times d$ unitary matrices. Of course $|U(d)| = \infty$ In fact, it is uncountably infinite. Better yet, U(d) is a "Lie group" meaning it is both a grup and smooth manifold, and can be understood rather well using its associated Lie algebra. It also has a subgroup $SU(d) \subseteq U(d)$.

U(d) is not abelian unless d = 1.

1.1.4 S_n

The symmetric group on n elements. That is, the set of all permutations of the set $\{1, ..., n\}$:

$$S_n = \{F : \{1, ..., n\} \to \{1, ..., n\} \mid F \text{ is a bijection}\}.$$

 S_n is not abelian unless n = 2.

Definition. A homomorphism is a function

$$\phi: G_1 \to G_2$$

such that

$$\phi(xy) = \phi(x)\phi(y)$$

for all $x, y \in G_1$. If ϕ is bijective, then it is called an isomorphism.

Theorem 2. (*Cayley's Theorem*) Let |G| = n and fix an enumeration of the elements of G, $G = \{x_1, ..., x_n\}$, for each $g \in G$, define

$$L_g: \{1, ..., n\} \to \{1, ..., n\}$$

where *j* is the unique index such that $gx_i = x_j$. Then L_g is a well-defined bijective function. Moreover, the function

$$G \to S_n$$
$$g \mapsto L_g$$

is an injective group homomorphism.

Thus, every (finite) group is a subgroup of a permutation group.

1.2 Cosets, etc.

Given $H \leq G$ and $g \in G$, the left H-coset of g is

 $gh = \{gh | h \in H\}$

Lemma: $g_1H = g_2H$ iff there exists $h \in H$ such that $g_2 = g_1h$.

The set of all left H-cosets is denoted

$$G/H = \{gH | g \in G\}$$

Note: G/H is a partition of G in which each part has size |H|. This proves Lagrange's theorem.

We can also similarly define right H-cosets.

We say H is a *normal* subgroup if for all $g \in G$, gH = Hg. We denote this $H \leq G$.

Theorem. The following are equivalent

- $H \trianglelefteq G$
- The function $(G/H) \times (G/H) \rightarrow G/H$ and $(g_1H, g_2H) \mapsto (g_1g_2)H$ is well defined and makes G/H a group. We call G/H with this group operation the quotient group (of G by H).

Note for abelian G, all subgroups are normal.

If $\phi : G_1 \to G_2$ is a homomorphism, then the kernel is ker $\phi = \{x \in G_1 | \phi(x) = 1\}$

Theorem 3. (*First Isomorphism theorem*)

If $\phi : G_1 \to G_2$ is a homomorphism, then $\phi(G_1) \leq G_2$, ker $\phi \leq G_1$ and $\phi(G_1) \cong G_1 / \ker \phi$.

2 Representations

Let V be a vector space over the complex numbers \mathbb{C} . Define the general linear group of V to be

 $GL(V) = \{F : V \to V \mid F \text{ is linear and bijective}\}.$

If $V = \mathbb{C}^n$ we write $GL(n, \mathbb{C}) = GL(\mathbb{C}^n)$.

A representation of a group G on V is a homomorphism

$$\rho: G \to GL(V)$$

Suppose

$$\rho_1: G \to GL(V_1)$$

 $\rho_2: G \to GL(V_2)$

are two representations. We say ρ_1 and ρ_2 are *isomorphic* if there exists an isomorphism of vector spaces

$$\Phi: V_1 \to V_2$$

such that

$$\rho_2(g) = \Phi \circ \rho_2(g) \circ \Phi^{-1}$$

for all $g \in G$. In other words for all $g \in G$ the following diagram commutes:

$$V_1 \xrightarrow{\rho(g)} V_1$$

$$\Phi \downarrow \qquad \qquad \downarrow \Phi$$

$$V_2 \xrightarrow{\rho(g)} V_2$$

A representation $\rho : G \to GL(v)$ is *unitary* if V is a finite-dimensional Hilbert space and $\rho(G) \subseteq U(V) \subseteq GL(V)$.

Lemma: Every representation over \mathbb{C} of a finite group is isomorphic to a unitary representation.

Goal of representation theory:

- 1. Classify the representations of a group.
- 2. Understand how the representation of G reflects the underlying structure of G.

To this end, there are two types of representations we are interested in:

- 1. Faithful:
 - $\rho: G \to GL(v)$ such that ρ is injective.
- 2. Irreducible, which we will define momentarily.

Note: Neither property implies the other.

A representation $\rho : G \to GL(v)$ is *reducible* if there exists a non-trivial, proper W such that $\rho(g)(W) \subseteq W$ for all $g \in G$.

An irreducible representation is a representation that is not reducible and not 0-dimensional. We often call these "irreps."

Lemma: Every 1-dimensional representation is an irrep.

In particular, the trivial 1-dimensional representation

$$\rho: G \to GL(\mathbb{C}) = \mathbb{C}^{\times} = \mathbb{C} - \{0\}$$
$$g \mapsto 1$$

is always irreducible.

Definition. A conjugacy class if G is a subset of $C \subseteq G$ such that

$$C = \{xgx^{-1} | x \in G\}$$

for some $g \in G$.

Theorem 4. If G is a finite group, then the number of complex irreps of G (considered up to isomorphism) equals the number of conjugacy classes of G.

The best way to prove this is by using "character theory". Given any representation $\rho : G \to GL(v)$, the *character* of ρ is

$$Tr_{\rho}: G \to \mathbb{C}$$
$$g \mapsto Tr(\rho(g))$$

Note: Tr_{ρ} is not a homomorphism. (It us a "class function," meaning it is constant on the conjugacy classes of G.)

Moreover, given any rep $\rho : G \to GL(v)$, there exists a unique collection of irreps $\rho_1, ..., \rho_k$ (possibly with multiplicities) such that

$$ho\cong igoplus_{i=1}^k
ho_i$$

Corollary: If A is abelian, then it has |A| many irreps.

Lemma: If A is abelian and $\rho : G \to GL(v)$ is irrep, then dim V = 1.

Proof: By prior lemma, we can assume ρ is unitary. In particular for all $a \in A$, $\rho(a)$ is unitary. However, we know that unitary matrices are diagonalizable. Since A is Abelian, the $\rho(a)$ are simultaneously diagonalizable. Now, let $\beta = {\vec{v_1}, ..., \vec{v_n}}$ be basis for which we have a diagonal representation for each i = 1, ..., n in the one-dimensional subspace. Clearly span ${\vec{v_i}}$ is invariant under the *A* action. Because ρ is assumed to be irreducible, we conclude that $\vec{v_i}$ must span all of *V*. In other words, *V* is 1-dimensional, as desired.

Thus, the irreps of an abelian group A are the same thing as a homomorphism $A \rightarrow U(1)$.

Definition. If A is a (finite) abelian group, then the dual group is the set of all irreducible representations of A:

$$\hat{A} := Hom(A, U(1))$$

The group operation is defined as follows. Given

$$\rho_1: A \to U(1)$$

 $\rho_2: A \to U(1)$

define

$$\rho_1 \otimes \rho_2 : A \to U(1)$$

 $a \mapsto \rho_1(a)\rho_2(a)$

Theorem 5. (Pontryagin duality) Let A be a finite abelian group, then

- 1. \otimes makes \hat{A} into an abelian group.
- 2. $\hat{A} \cong A$ (But NOT naturally)
- *3.* $\hat{A} \cong A$ (*Naturally*)