
CS 593/MA 592 - Intro to Quantum Computing
Spring 2024

Tuesday, February 20 - Lecture 7.1

Reading: Appendix 2

Agenda:

1. Groups

2. Cosets, Quotient, etc.

3. Representations

4. Group algebra and regular representations

1 Groups
Intuition: ”A group is an abstract symmetry type”

Definition. A group G is a set with a binary operation

· : G×G → G

that satisfies the following axioms:

1. Associativity

2. There exists an identity element e such that ge = eg = g for all g ∈ G.

3. There exists an inverse for all g ∈ G and g−1 ∈ G such that gg−1 = g−1g = e

G is finite if |G|< ∞. We call |G| the order of G. The order of g ∈ G is |g|= min{k ≥ 1|gk = e}.

A subgroup of G is a subset H ⊆ G such that:

1. For all h ∈ H, h−1 ∈ H.

2. For all h1,h2 ∈ H, h1h2 ∈ H

We write H ≤ G if it is a subgroup.
Given x1, ...,xk ∈ G the sub group generated by them is:

⟨x1, ...,xk⟩=
⋂

H≤G

H

.
We call ⟨x⟩ the cyclic subgroup generated by x, since it consists of all powers of x (positive, negative and 0 powers).
Lemma: If g ∈ G, then |g|= |⟨g⟩|.

Theorem 1 (Lagrange’s Theorem). If H ≤ G, then |H| divides |G|.

A group G is abelian or commutative, if for all g1,g2 ∈ G we have g1g2 = g2g1.
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1.1 Examples of Groups
1.1.1 (Z/NZ,+)

This is the group of addition mod N. It will be of great importance later when N = 2n.

1.1.2 ((Z/2Z)n,+)

Given a1, .....an and b1, .....bn, then (a1, .....an)+(b1, .....bn) = a1 +b1, .....,anb+n where the addition is mod N.
Fact: Every finite abelian group is isomorphic to a group of the form

k⊕
i=1

Z/NiZ

where the Nis are positive integers. Here, note that if A and B are two groups, then

A⊕B = {(a,b)|a ∈ A,b ∈ B}

is also a group. If we apply the Chinese remainder theorem, we can classify finite abelian groups as sums of cyclic
groups of prime power order.

1.1.3 U(d)

This is the unitary group of d × d unitary matrices. Of course |U(d)| = ∞ In fact, it is uncountably infinite. Better
yet,U(d) is a ”Lie group” meaning it is both a grup and smooth manifold, and can be understood rather well using its
associated Lie algebra. It also has a subgroup SU(d)⊆U(d).

U(d) is not abelian unless d = 1.

1.1.4 Sn

The symmetric group on n elements. That is, the set of all permutations of the set {1, . . . ,n}:

Sn = {F : {1, ...,n}→ {1, ...,n} | F is a bijection}.

Sn is not abelian unless n = 2.

Definition. A homomorphism is a function
φ : G1 → G2

such that
φ(xy) = φ(x)φ(y)

for all x,y ∈ G1. If φ is bijective, then it is called an isomorphism.

Theorem 2. (Cayley’s Theorem) Let |G| = n and fix an enumeration of the elements of G, G = {x1, ...,xn}, for each
g ∈ G, define

Lg : {1, ...,n}→ {1, ...,n}

where j is the unique index such that gxi = x j. Then Lg is a well-defined bijective function. Moreover, the function

G → Sn

g 7→ Lg

is an injective group homomorphism.

Thus, every (finite) group is a subgroup of a permutation group.
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1.2 Cosets, etc.
Given H ≤ G and g ∈ G, the left H-coset of g is

gh = {gh|h ∈ H}

Lemma: g1H = g2H iff there exists h ∈ H such that g2 = g1h.

The set of all left H-cosets is denoted
G/H = {gH|g ∈ G}

Note: G/H is a partition of G in which each part has size |H|. This proves Lagrange’s theorem.

We can also similarly define right H-cosets.

We say H is a normal subgroup if for all g ∈ G, gH = Hg. We denote this H ⊴G.

Theorem. The following are equivalent

• H ⊴G

• The function (G/H)× (G/H)→ G/H and (g1H,g2H) 7→ (g1g2)H is well defined and makes G/H a group. We
call G/H with this group operation the quotient group (of G by H).

Note for abelian G, all subgroups are normal.

If φ : G1 → G2 is a homomorphism, then the kernel is kerφ = {x ∈ G1|φ(x) = 1}

Theorem 3. (First Isomorphism theorem)
If φ : G1 → G2 is a homomorphism, then φ(G1)≤ G2, kerφ ⊴G1 and φ(G1)∼= G1/kerφ .

2 Representations
Let V be a vector space over the complex numbers C. Define the general linear group of V to be

GL(V ) = {F : V →V | F is linear and bijective}.

If V = Cn we write GL(n,C) = GL(Cn).
A representation of a group G on V is a homomorphism

ρ : G → GL(V )

Suppose
ρ1 : G → GL(V1)

ρ2 : G → GL(V2)

are two representations. We say ρ1 and ρ2 are isomorphic if there exists an isomorphism of vector spaces

Φ : V1 →V2

such that
ρ2(g) = Φ◦ρ2(g)◦Φ

−1
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for all g ∈ G. In other words for all g ∈ G the following diagram commutes:

V1 V1

V2 V2

ρ(g)

Φ Φ

ρ(g)

A representation ρ : G → GL(v) is unitary if V is a finite-dimensional Hilbert space and ρ(G)⊆U(V )⊆ GL(V ).

Lemma: Every representation over C of a finite group is isomorphic to a unitary representation.

Goal of representation theory:

1. Classify the representations of a group.

2. Understand how the representation of G reflects the underlying structure of G.

To this end, there are two types of representations we are interested in:

1. Faithful:
ρ : G → GL(v) such that ρ is injective.

2. Irreducible, which we will define momentarily.

Note: Neither property implies the other.
A representation ρ : G → GL(v) is reducible if there exists a non-trivial, proper W such that ρ(g)(W )⊆W for all

g ∈ G.
An irreducible representation is a representation that is not reducible and not 0-dimensional. We often call these

“irreps.”

Lemma: Every 1-dimensional representation is an irrep.

In particular, the trivial 1-dimensional representation

ρ : G → GL(C) = C× = C−{0}
g 7→ 1

is always irreducible.

Definition. A conjugacy class if G is a subset of C ⊆ G such that

C = {xgx−1|x ∈ G}

for some g ∈ G.

Theorem 4. If G is a finite group, then the number of complex irreps of G (considered up to isomorphism) equals the
number of conjugacy classes of G.

The best way to prove this is by using “character theory”. Given any representation ρ : G → GL(v), the character
of ρ is

Trρ : G → C
g 7→ Tr(ρ(g))

Note: Trρ is not a homomorphism. (It us a “class function,” meaning it is constant on the conjugacy classes of G.)
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Moreover, given any rep ρ : G → GL(v), there exists a unique collection of irreps ρ1, ...,ρk (possibly with multi-
plicities) such that

ρ ∼=
k⊕

i=1

ρi

Corollary: If A is abelian, then it has |A| many irreps.

Lemma: If A is abelian and ρ : G → GL(v) is irrep, then dimV = 1.

Proof: By prior lemma, we can assume ρ is unitary. In particular for all a ∈ A, ρ(a) is unitary. However, we
know that unitary matrices are diagonalizable. Since A is Abelian, the ρ(a) are simultaneously diagonalizable. Now,
let β = {v⃗1, ..., v⃗n} be basis for which we have a diagonal representation for each i = 1, ...,n in the one-dimensional
subspace. Clearly span{⃗vi} is invariant under the A action. Because ρ is assumed to be irreducible, we conclude that
v⃗i must span all of V . In other words, V is 1-dimensional, as desired.

Thus, the irreps of an abelian group A are the same thing as a homomorphism A →U(1).

Definition. . If A is a (finite) abelian group, then the dual group is the set of all irreducible representations of A:

Â := Hom(A,U(1))

The group operation is defined as follows. Given

ρ1 : A →U(1)

ρ2 : A →U(1)

define
ρ1 ⊗ρ2 : A →U(1)

a 7→ ρ1(a)ρ2(a)

Theorem 5. (Pontryagin duality) Let A be a finite abelian group, then

1. ⊗ makes Â into an abelian group.

2. Â ∼= A (But NOT naturally)

3. ˆ̂A ∼= A (Naturally)
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