
CS 593/MA 592 - Intro to Quantum Computing
Spring 2024

Thursday, March 5 - Lecture 9.1
Today’s scribe: Jesse [Note: note proofread by Eric]

Reading:

1. 5.2 of [NC]

2. 14 of [Kitaev-Shen-Vynlyi]

Agenda:

1. What quantum simulation does not accomplish

2. Phase estimation

3. QMA

1 Recap of Quantum Simulation
Last time, given both a state |ψ⟩ ∈ (C2)⊗n and a Hamiltonian H on (C2)⊗n, we can simulate the time evolution of the
Hamiltonian e−iHt on |ψ⟩. This is a source of quantum advantage. But this does not mean that quantum simulation can
find important states. Arguably the most important type of question in ”applied” quantum mechanics is the following.

Given a local Hamiltonian H, for some system discretized on some qubits, find a lowest energy eigenvector of H.

This question is hard to answer in general, even for ”physically reasonable” H and even if we have a quantum
computer.

Example: Last time we discussed the Heisenberg model.

H =−
M−1

∑
i=1

JX XiXi+1 + JYYiYi+1 + JZZiZi+1 (1)

A variation of the Heisenberg model is the Ising model where

JX = JY = 0,JZ depends on i (2)

This is a classical statistical mechanical system because H is already diagonal in the computational basis. We can set
up an Ising model on any edge weighted graph (V,E,J : E → R). This determines a Hamiltonian by putting a qubit at
every vertex and defining

H =− ∑
e={i,v}∈E

J(e)ZiZ j (3)

It turns out that finding the lowest energy states of these generalized Ising models is equivalent to the weighted max-cut
problem which is NP-hard. If we have a complicated Hamiltonian, then it is QMA-hard.

2 Phase Estimation
Given a eigenvector |u⟩ of a Hamiltonian H on n qubits, can we estimate its energy spectrum? Equivalently, we can
find the eigenvalue θ such that H|u⟩= θ |u⟩. Classically It is not clear how to do this with less than exponential space
unless H and |u⟩ are sparse in the computational basis. Because we are performing a matrix vector multiply to find the
scalar multiple of the eigenvector |u⟩, which has exponential time complexity in the number of qubits n. Quantumly
There exists a good approximation algorithm (assuming H is ”sensible”, ||H|| is not too big)
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Remark. If we evolve the system for one unit of time then it is equivalent to multiplying |u⟩ by an exponentiated phase.

H|u⟩= θ |u⟩ =⇒ e2πi H
2||H|| |u⟩= e2πi θ

2||H|| |u⟩ (4)

If we have ∥H∥ ≤ poly(O(n)), then we can apply the inverse quantum Fourier transform and get back the phase θ

roughly.

So we can reduce to the following problem.

Given a unitary U and an eigenvector |u⟩ with

U |u⟩= e2πiθ |u⟩ (5)

Find an approximation to the phase θ . We will assume we are able to implement C−U2k
for arbitrary k via oracle.

Using the controlled U we can build a unitary called ”t − ICU” t-bit integer controlled-U.

This is a unitary operation that is controlled by t ancillas, where U is applied to |ψ⟩ when an ancilla qubit in |1⟩ state,
e.g. if | j⟩= |1 . . .11⟩= 2t −1. We build this ”t-ICU” operator from controlled-U gates as follows, where the evolution
time of |ψ⟩ is controlled by the binary representation of the state of the ancilla qubits | j⟩.

Remark.

(t − ICU)| j⟩⊗ |ψ⟩= | j⟩⊗U j|ψ⟩
if |ψ⟩= |u⟩ the eigenstate of H, then

(t − ICU)| j⟩⊗ |u⟩= e2πiθ | j⟩⊗ |u⟩
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As usual, we might guess that it would be a good idea to apply t− ICU to a uniform superposition state on t qubits,
1

2t/2 ∑
2t−1
j=0 | j⟩⊗ |u⟩. This yields the following representation, where we get all the different powers of the eigenvalue

e2πiθ from j = 0 to j = 2t −1,

(t − ICU)
1

2t/2

2t−1

∑
j=0

| j⟩⊗ |u⟩= 1
2t/2

2t−1

∑
j=0

e2πi jθ | j⟩⊗ |u⟩

=
1

2t/2 (|0⟩+ e2πi2t−1θ |1⟩)(|0⟩+ e2πi2t−2θ |1⟩) . . .(|0⟩+ e2πi20θ |1⟩)⊗|u⟩

This looks suspiciously familiar to QFT. More precisely, if 0 ≤ θ < 1 has an exact representation as a binary fraction
using t bits, i.e. θ = 0.θ1θ2 . . .θt , then what we see is precisely the Fourier transform of this computational basis
vector

F(Z /2Z )t |θnθn−1 . . .θ2θ1⟩ (6)

So we could apply the inverse Fourier transform. Thus at least if θ = 0.θ1θ2 . . .θt the following circuit does the job of
finding θ given |u⟩.

Remark.
H⊗t |0 . . .0⟩= (FZ /2Z )⊗t = F(Z /2Z )t |0 . . .0⟩ (7)

What if θ is not a t-bit binary fraction? The procedure still works, but does not succeed perfectly, with some probability.

3 QFT protocol summary
Input:

1. n,ε > 0, t = n+ ⌈log(2+1/ε)⌉

2. oracle access to t − ICU’s (or alternatively, C−U2k
)

3. an eigenstate |u⟩ of U with U |u⟩= e2πiθ |u⟩

Output:
(Best) n bit approximation to θ in binary

Complexity:

1. O(t2) operations

2. One call to t − ICU

3. Success with prob 1− ε
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We can trade-off the number of bit precision n with the probability of success 1− ε . What if |u⟩ is not an eigenstate?
but an arbitrary state |ψ⟩ is given. In principle, we do not know the amplitude ahead of time. We can write |ψ⟩ as a
superposition of eigenstates |u⟩ of U , where U |u⟩= e2πiθu |u⟩. We can sample from the eigenbasis of U .

|ψ⟩= ∑
u:eigenvectors of U

zu|u⟩ (8)

If we input |ψ⟩ to QPE then after the measurement, the output will be an approximation to θu with probability (HW5)

|zu|2(1− ε) (9)
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