
CS 593/MA 595 - Intro to Quantum Computation

Theoretical Homework 2

Due Wednesday, September 10 at 11:59PM (upload to Brightspace)

Reminder that THW will be a little longer the first few weeks of the semester.
Recommended exercises from Mike and Ike (not to be turned in): 2.57, 2.58, 2.59, 2.60, 2.61,

2.66.

1. (a) A vector |ψ⟩ in a tensor product Hilbert space V ⊗ W is called separable (or unentangled) if
there exist vectors |v⟩ ∈ V and |w⟩ ∈ W such that |ψ⟩ = |v⟩ ⊗ |w⟩. Give an exampe of a state

|ψ⟩ ∈
(
C2

)⊗2
on two qubits that is not separable (in other words, it is entangled). Justify your

answer.

(b) Show that V ⊗W has no entangled states if and only if V or W is 0 or 1 dimensional.

2. This problem will give you a little flavor for mixed states. A classical ensemble of pure quantum states
is a probability distribution on the set of unit length vectors in some Hilbert space. Classical ensembles
determine “mixed states,” but different ensembles can lead to the same mixed state. We will give an
example in this problem.

Consider the following two classical ensembles of states on a qubit:

• Ensemble 1: 50%|0⟩, 50%|1⟩
• Ensemble 2: 50%|+⟩, 50%|−⟩.

Prove that Ensemble 1 is indistinguishable from Ensemble 2 in the following strong sense: if

U :
(
C2

)⊗n ⊗ C2 →
(
C2

)⊗n ⊗ C2

is any unitary, |ϕ⟩ ∈
(
C2

)⊗n
is any normalized state and j = 0, . . . , 2n+1 − 1 is an outcome for

computational basis measurement on
(
C2

)⊗n ⊗ C2 =
(
C2

)⊗n+1
, then

.5p(j | U |ϕ⟩ ⊗ |0⟩) + .5p(j | U |ϕ⟩ ⊗ |1⟩) = .5p(j | U |ϕ⟩ ⊗ |+⟩) + .5p(j | U |ϕ⟩ ⊗ |−⟩).

3. Consider the EPR state

|EPR⟩ = 1√
2
(|00⟩+ |11⟩)

on two qubits. Suppose Alex holds one of the qubits and Blake holds the other one, and assume that
Alex and Blake both know their qubits are in the state |EPR⟩.
If Alex goes to the opposite end of the universe from Blake, and then conducts computational basis
measurement to their single qubit, what is the measurement result (as a probability distribution on
the set {0, 1})?
If Alex conditions on the outcome of their single qubit’s measurement, what does Alex know about
Bob’s measurement result? (Hint: your answer should depend on Alex’s outcome!)
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Food for thought (you don’t need to submit an answer for the following): you should have just shown
that after performing her measurement, Alex now knows something about Blake’s qubit on the other
side of the universal. Does this imply that the universal speed limit for information propogation
(namely, the speed of light) is violated?

4. Let’s work through the details of quantum state tomography via repeated measurements in the com-
putational basis.

Let

|ψ⟩ =
2n−1∑
b=0

zb|b⟩ ∈
(
C2

)⊗n

be some unknown state on n qubits (which we will assume is normalized). The goal of quantum state
tomography is to determine what the amplitudes zb are—up to a given error, with high confidence.
We don’t yet have the tools to do things at this level of precision quite yet, but we can at least ask
about trying to determine, say, |z0|2 up to some given accuracy.

Since measurement collapses the state, we will go ahead and assume that we are able to prepare as
many copies of |ψ⟩ as we want for free.1 On each copy, we will perform projective measurement in the
computational basis. The outcomes of the different measurement experiments will be independent and
identically distributed. If we do this k times, we get a sequence of outcomes (i1, . . . , ik) where each
ij ∈ {0, . . . , 2n − 1}. From this, we may compute an empirical probability distribution p̃k on the set
{0, . . . , 2n−1} simply by counting the different outcomes and dividing by k

p̃k(i) :=
#{j | ij = i}

k
.

Of course, the true distribution of outcomes is given by the Born rule:

p(i) = p(i | |ψ⟩) = |zi|2 = ziz
∗
i .

Let ϵ > 0. We would like to know how many rounds of our experiment we need to perform—that is,
how large k needs to be—in order for us to be able to confidently say that our empirical estimate p̃k(0)
is within ϵ of the true value p(0). This requires a little bit of explaining, basically having to do with
the fact that p̃k(0) is itself a random variable (on the set {0, 1/k, 2/k, . . . , k/k = 1}, but don’t think
too hard about this).

For 0 ≤ δ ≤ 1, let us say that we are (1− δ)-confident that our observed p̃k(0) is within ϵ if we pick k
large enough so that

Prob(|p̃k(0)− p(0)| ≥ ϵ) ≤ δ.

Our goal is to find a lower bound on k (as a function of ϵ, but independent of everything else) that
makes this inequality true.

To do so, we can use Chebyshev’s inequality (see Appendix 1 in Nielsen and Chuang). This problem
will walk you through this. The idea is exactly the same as trying to get a good estimate of the bias
of an unfair coin with high confidence.

(a) Let Y be the random variable on the set {0, 1} with p(0) = 1−|z0|2 and p(1) = |z0|2.2 Show that
E(Y ) = E(Y 2) = |z0|2. Use this to show the variance var(Y ) = |z0|2 − |z0|4 = |z0|2(1− |z0|2).

(b) Show that max0≤p≤1 p(1− p) = 1/4. Conclude that var(Y ) ≤ 1/4.

1To be clear: this is not always a realistic assumption! Trying to minimize the number of copies of |ψ⟩ we use is part of the
subject of quantum query complexity.

2So, we should interpret outcome 0 for Y as “after measuring |ψ⟩ once in the computational basis, we did not see outcome
0.” Similarly, we should interpret outcome 1 as “after measuring |ψ⟩ once in the computational basis, we DID see outcome 0.”
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(c) Now let Y1, . . . , Yk be k i.i.d variables all having the same distribution as Y .3 Let Xk be the
sample mean

1

k

k∑
i=1

Yi.

Show that Xk is exactly the same thing as p̃k(0). (This should be very easy.)

(d) Use the fact that expectation values are linear to show E(Xk) = E(p̃k(0)) = p(0). (In the language
of probability theory, this shows that p̃k(0) is an “unbiased estimator” of the true probability p(0).)

(e) Since the Yi are independent, the variance of their sum is the sum of their variances. Use this to
show var(X) = 1

k var(Y ).

(f) Now use Chebyshev’s inequality to argue that we should take k ≥ 1
4ϵ2δ .

(g) How big should k be if we want to be 95% confident that our estimate of |z0|2 is correct up to 10
bits of precision?

Let me conclude by noting that there are better ways to do quantum state tomography!

3Think of these as the different measurements we perform on k copies of |ψ⟩.
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