CS 593/MA 595 - Intro to Quantum Computation Theoretical Homework 7

Due Wednesday, November 5 at 11:59PM (upload to Brightspace)

1. In this homework, we will explicitly build a (classical) circuit that calculates the modular exponentiation circuit in Shor's algorithm, with X, CNOT, and Toffoli gates (elementary gates). We will do this step-by-step, so this homework is long but easy.

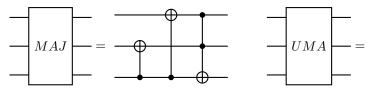
Let's define some notations first. Let $[x]_n$ represent the binary representation of x stored in an n-bit register, and we always assume $0 \le x < 2^n$ whenever x is in $[x]_n$. We write our goal in this homework as finding circuit $\text{IME}_{m,n,a,N}$ with polynomial gates that satisfies

$$[k]_m[x]_n \xrightarrow{\mathrm{IME}_{m,n,a,N}} [k]_m[(a^k x)\%N]_n,$$

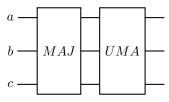
which means that the circuit $IME_{a,N}$ transforms a state with two registers of lengths m, n and values k, x to a state where the second register's value becomes $a^k x \% N$, with the help of ancillary bits. Here a% N represents the modular operation $a \mod N$.

Feel free to use the facts that the reverse and single-bit control of such a circuit can be done with constant factors: i.e., a k gate circuit R's single-bit controlled version $|0\rangle\langle 0|\otimes I+|1\rangle\langle 1|\otimes R$ can be realized with at most 3k gates, which can be proven by induction on k. Meanwhile, rearranging the order of bits (registers) is considered free and ancillary bits are also free to use. REMEMBER: always clean up your ancillary bits - ancillary bits are borrowed in value 0 and must be returned with value 0.

(a) Let s = (a + b + c)%2, and let gates MAJ and UMA be



Calculate the outputs of



(b) Construct circuit ADD_n (addition) with O(n) elementary gates (equivalently, O(n) MAJ and UMA gates) satisfying:

$$[b]_1[x]_n[y]_n \xrightarrow{\text{ADD}_n} [b]_1[x]_n[(x+y+b)\%2^n]_n.$$

(Hint: Make use of a carrier bit $s_i = (x_i + y_i + s_{i-1})\%2^n$. (a) gives the base case for the recursive construction.)

(c) Construct circuit NEG_n (negation), COPY_n (copying), and PREP_{n,N} (preparation) with O(n) elementary gates, where $0 \le N < 2^n$, satisfying

$$[x]_n \xrightarrow{\text{NEG}_n} [(-x)\%2^n]_n,$$

$$[x]_n[0]_n \xrightarrow{\text{COPY}_n} [x]_n[x]_n,$$

$$[0]_n \xrightarrow{\text{PREP}_{n,N}} [N]_n,$$

(d) With all gates introduced above, construct SUB_n (subtraction), CMP_n (comparison) with O(n) elementary gates satisfying:

$$[x]_n[y]_n \xrightarrow{\text{SUB}} [x]_n[(y-x)\%2^n]_n,$$
$$[x]_n[y]_n[0]_1 \xrightarrow{\text{CMP}} [x]_n[y]_n[x \le_? y]_1,$$

where
$$x \leq_? y = \begin{cases} 0, & x > y \\ 1, & x \leq y \end{cases}$$
.

(e) With all gates introduced above, construct $MADD_{n,N}$ (modular addition), where $0 \le N < 2^n$, with O(n) elementary gates satisfying:

$$[x]_n[y]_n \xrightarrow{\text{MADD}_{n,N}} [x]_n[(x+y)\%N]_n.$$

(f) With all gates introduced above, construct $\mathrm{MMUL}_{n,a,N}$ (modular constant multiplication), where $0 \leq a < N < 2^n$, with $O(n^2)$ elementary gates satisfying:

$$[x]_n[0]_n \xrightarrow{\mathrm{MMUL}_{n,a,N}} [x]_n[(ax)\%N]_n.$$

(g) With all gates introduced above, construct $\text{IMM}_{n,a,N}$ (in-place modular constant multiplication), where $0 \le a < N < 2^n$ and a, N are coprime, with $O(n^2)$ elementary gates satisfying:

$$[x]_n \xrightarrow{\mathrm{IMM}_{n,a,N}} [(ax)\%N]_n.$$

You may assume that you know $0 \le a^{-1} < N$ such that $(a^{-1}a)\%N = 1$, due to Euclidean algorithm.

(h) With all gates introduced above, construct $IME_{m,n,a,N}$ (in-place modular constant exponentiation), where $0 \le a < N < 2^n$ and a, N are coprime, with $O(n^2m)$ elementary gates satisfying:

$$[k]_m[x]_n \xrightarrow{\mathrm{IME}_{m,n,a,N}} [k]_m[(a^k x)\%N]_n.$$

Now, we have an explicit construction for the classical arithmetic circuit with polynomial quantum gates to be used in Shor's discrete logarithm and factorization algorithm.