CS 593/MA 595 - Intro to Quantum Computation
Theoretical Homework 7

Due Wednesday, November 5 at 11:59PM (upload to Brightspace)

1. In this homework, we will explicitly build a (classical) circuit that calculates the modular exponentiation
circuit in Shor’s algorithm, with X, CNOT, and Toffoli gates (elementary gates). We will do this step-
by-step, so this homework is long but easy.

Let’s define some notations first. Let [z], represent the binary representation of x stored in an n-bit
register, and we always assume 0 < 2 < 2" whenever z is in [z],. We write our goal in this homework
as finding circuit IME,,, ,, o,y With polynomial gates that satisfies

IME,, 5,0, N
oSy

(k][] [k]m[(akz)%]\f}n,

which means that the circuit IME, n transforms a state with two registers of lengths m,n and values
k, x to a state where the second register’s value becomes a*z% N, with the help of ancillary bits. Here
a%N represents the modular operation a mod N.

Feel free to use the facts that the reverse and single-bit control of such a circuit can be done with
constant factors: i.e., a k gate circuit R’s single-bit controlled version |0) (0] ® I 4 |1) (1] ® R can be
realized with at most 3k gates, which can be proven by induction on k. Meanwhile, rearranging the
order of bits (registers) is considered free and ancillary bits are also free to use. REMEMBER: always
clean up your ancillary bits - ancillary bits are borrowed in value 0 and must be returned with value 0.

(a) Let s = (a+ b+ ¢)%2, and let gates MAJ and UMA be

AR\

— I \N Y — I

D
A%

fan)
A\

— MAJ —=

4D
\'

—UMA|—=

fan
A
fan)
A\

Calculate the outputs of

a — — —

b— MAJ —UMA|—

c — — —

(b) Construct circuit ADD,, (addition) with O(n) elementary gates (equivalently, O(n) MAJ and
UMA gates) satisfying:

ADD,,
IR

[b]1[]n [y]n b1 [2]n[(z +y + £)7%62"],

(Hint: Make use of a carrier bit s; = (x; +y; + s;-1)%2". (a) gives the base case for the recursive
construction.)

(c) Construct circuit NEG,, (negation), COPY,, (copying), and PREP,, n (preparation) with O(n)
elementary gates, where 0 < N < 2", satisfying

(2] 2 [(—2)%2"]

(] [0]n 22 (2], (2],

PREP,,
————JQ[AHM

(d) With all gates introduced above, construct SUB,, (subtraction), CMP,, (comparison) with O(n)
elementary gates satisfying:

2] [yln 2225 [2]nl(y —) %2,

(2] [y)n [0l 5 [2]nlylalz <z 9,

0, z>y

Wheremg?y:{l <
y TXY

(e) With all gates introduced above, construct MADD,, y (modular addition), where 0 < N < 2",
with O(n) elementary gates satisfying:

MADD,, n
-

(f) With all gates introduced above, construct MMUL, o v (modular constant multiplication), where
0<a< N < 2" with O(n?) elementary gates satisfying:

[z]n[(z + y) N]n.

CHUMRESSS

[x]n[(az)%N],.
(g) With all gates introduced above, construct IMM,, , x (in-place modular constant multiplication),
where 0 < a < N < 2" and a, N are coprime, with O(n?) elementary gates satisfying:

IMMp,q,N
—_

[x]n [(az)%N],.

You may assume that you know 0 < a=! < N such that (a=!'a)%N = 1, due to Euclidean
algorithm.

(h) With all gates introduced above, construct IME,, ,, o v (in-place modular constant exponentia-
tion), where 0 < a < N < 2" and a, N are coprime, with O(n?m) elementary gates satisfying:

IMEm,n,a,N
B

[K]m (2] [k]m[(akx)%N]n‘

Now, we have an explicit construction for the classical arithmetic circuit with polynomial quantum
gates to be used in Shor’s discrete logarithm and factorization algorithm.

