Meeting 1.1:			•
O. Welcome, logistics, 8	Surveys		•
I. Course overview			•
I. What is a manifold	P		•
III. Why are 3-dimensional	man: Folds special?		•
· · · · · · · · · · · · · · · · · · ·			•
Next time: Invariants	of man: Folds, and	different	0
Next time: Invariants encoding.	of manifolds, and s of 3-manifold	different Js,	•
Next time: Invariants encoding	of manifolds, and s of 3-manifold	Jifferent Js,	
Next time: Invariants encoding	of man: Folds, and s of 3-man: Fold	JiFferent J.	
Next time: Invariants encoding	of man:Folds, and s of 3-man: Fold	Jifferent J.	

I. Course overview
Goals:
- Understand the basics of quantum computing, computational Complexity,
and (geometric) topology (especially Knots and 3-manifolds).
- Build a precise picture of the role of topology in quantum computing,
especially as a source of quantum error correcting codes and potential
hardware applications via topological quantum computing.
- Develop analogies between reversible circuit models of
computation and topological invariants, especially those determined
by topological quantum Field theories (TQFTs).
- Review the state of the art in the complexity of various topological problems

Pra	ctically,	we wi	ll go ba	ackwards: to	pology First,	then CS,	then RC.	
	lecture	For	Several	weeks, a	d eventually	we will	frasition	
	Commun	9	zarnhg.			· · · · · ·		
· · · ·	· · · · · · ·	· · · ·	· · · · · · ·	· · · · · · · · ·	· · · · · · · · ·		· · · · · · · · ·	· · · · · · ·
						· · · · · · ·		
• • • •								
· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · ·	· · · · · · ·
	· · · · · · · ·					· · · · · · ·		
· · · ·	· · · · · · · ·	· · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · ·	· · · · · · ·
	· · · · · · ·			· · · · · · · · ·	· · · · · · · · ·	· · · · · · ·		
	· · · · · · ·		· · · · · · ·	· · · · · · · · ·	· · · · · · · · ·			· · · · · · ·
• • • •								· · · · · · ·

I. What is a manifold?
A topological space that has a reasonable, constant notion of
dimension, so every point has a neighborhood that looks like
a neighborhood of a point in IRM. More precisely:
Topological manifold of dimension in: Topological space Mn admits
an open cover { Ua} ac A together w/ coordinate charts, which
are homeomorphisms la: Ud > Va [where Va is an open
set in IRM.
Typically also assume Mis Hausdorff and paracompact
Problem for computability: Honeo (IR") is gargantum.

Recall: the otlas of charts { Qa} determines a collection of trastion maps $\Psi_{\alpha \rightarrow \beta} : \Psi_{\alpha} (U_{\alpha} \cap U_{\beta}) \rightarrow \Psi_{\beta} (U_{\alpha} \cap U_{\beta})$ "Better" manifolds are formed by requiring better conditions on all of the transition maps. Eig. the topol-gica manifold M is $\psi_{\alpha} \rightarrow \beta$ $\psi_{\beta} \circ \psi_{\alpha}^{-1}(x)$ equipped w/ a smath structure it we pick an atlas of charts so that every transition map is 9 smooth function. $(\mathcal{A}(\mathcal{V}_{\mathcal{A}} \cap \mathcal{V}_{\mathcal{P}}))$

Take-away: a topological manifold wight have disterant
Smooth structures.
Even smooth manifolds are too complicated to teed to a
computer.
The "correct" type of manifold for inputting to computers is
piecewise linear. After massaging the tracition maps, we
Confeed flum to a computer.
But une can go fur ther! We can triagulate! Morrover, me get
special typos of friagulations.
· · · · · · · · · · · · · · · · · · ·

More precisely, every PL maitdo is PL homeomorphic to a	
Simplicial complex w/ condition that the link of every Vert	EX
is q PL-sphere.	
A simplicial complex is a set of vertices together my	
a subset $C \subseteq P(V)$ that is downword closed.	· · · · · · ·
$\gamma = \xi = \xi = \xi = \xi$	
1 pre = { { a, b, c}, { { b, d} }	
$C = \mathcal{P}(\{a_1, b_1, c, s\}) \cup \mathcal{P}(\{z, b_1, c, s\})$	· · · · · · ·
	· · · · · · ·
	· · · · · · · ·