Meeting 1.2
I. Triangulations of (compact, PL) manifolds
II. Basic questions, and why dimension 3 is special
III. Time permitting: other encoding of manifolds, Knots \& links

Next time: Complexity theory
I. Triangulations

Recall our claim from last class: every (compact) PL d-manifold is PL-homeomorphic to a (finite) d-dimensional simplicial Complex st. the link of every vertex is a PL $d-1$ sphere. We will call such a simplicial complex a triangulation of a mani fol 1).

Link of vertex v is the union of all simplices τ such that τ and v share amplex, but τ and v are disjoin.

PL Homeomorphism
A homeomorphism $f: M \rightarrow N$ is a PL homeomorphism, if in all coordinate charts (of the $P L$ structures of M and N), F is a PL hames b/w open subsets of $\mathbb{R} 4$.

Two triangulations ae combinatorally equivalat if they hove isomorphic $\underbrace{\text { refinements. }}$
Let T_{i} be a triangulation of μ_{i} i $i=1 / 2$.
Then M_{1} and M_{2} we PL hommomorphic if and only it
 τ_{r} and τ_{2} are combinatorially equivalent.

Example Every \mathcal{L}-regular graph is a triangulation of a (possibly disconnected) , manifold.
\simeq two copies of S^{1}

Example Every α-dim simplicial complex where each edge is contained in exactly α triangles is a triangulation of 9 surface ("surface" $=" 2$-dimensional) manifold").

Non-examples 1.

2. PL suspensions.

Warning A simplicial complex may be homeomorphic (but not PL homeomorphic) to a manifold, even if the complex is not what were calling a triangulation.
Double suspension theorem If M is any d-manifold that has the same homology as $S^{2} /$ then the double suspension of M, $S^{2} M$, is a fop logical $d+2$ sphere.

ManiFolds with boundary
In defin of manifold, jest replace \mathbb{R}^{d} with $\mathbb{R}^{\alpha-1} \times[0, \infty)$.
Example

triangulation of tors w/ one boundary component
For frimgulations of manifolds w/ boundary, the lines of boundary ports should be d-1 disks.

Standing implicit assumptions
Abuse of notation: "manifold" will often mean "triangulation of a (closed, compact, orientable) manifold."

But sometimes not.
If unclear, please ask!
II. Basic questions, ad why $d=3$ is the best (to me)

If we want to use triangulations of manifolds as input to computer programs designed to calculate properties of manifolds, at the very least, we would like to recognize when a simplicial complex is a valid triangulation.
How would we do thus?
Work recursively and "down" From d all the way to 0 .
Pick a vertex u and calculate link (u).
Then detornue if ink (U) is a $(\partial-1)$-dimensional triangulation.
IF not, stop. If yes, then decide if $\operatorname{link}(u)$ is a $\alpha-1$ sphere If yes, mauve to next vertex. Repeat

The curse of uncomputability Given a d-ninefold, is it a d-sphere?

(*): First decide if 2-manitold; then compute H_{*} Using SNF on d, cellar (t) : will discuss next week bound ry.
mop.

Other nice things about 3 -manifolds
Morse's Theorem in diversion 3

$$
T O P=P L=D I F F .
$$

Poincare conjecture true
If M is has momotopy groups of S^{3}, then $M \cong S^{3}$.

Oeometrization ∇_{0}

