0		M	le	<u>e</u>	<u> </u>	ר <u>ר</u>	ہ م	•	<u> </u> .	<u>)</u>		0	•	•	•		0	•	•	•	•	•	•	•	0	•	•		•	0	•	•	•	•	· ·	•	•	•	•	• •		•	•	•	•	•	•	•	• •	•	•
•	•		•		Īr	۰ î	ar	g	v	9	¦ ;	D.	n Š	•		,f	•		(c	Ö	m	P	9.C	<u>,</u>) .	P	Ľ	.)		ŀ	า. ส	1	Fa	5/	09	-		•	•	• •		•	•		•			•	• •		•
•	Ţ	Ē	•		3	9_	511	5		7	Je	י צ צ	<u>†</u> .	0	43	s j	•		- ~ ()	•	Ļ	<i>ι</i>	י די	•	C) 	י ו ויי		ک ر	5	י ה	•	, - I		is			:p	e	Ci	י ק) 	•	0	•	0	•	• •	0	•
	Ţ		•	•	Ti	- m	٩	P	e	٢ _٢	าเ	ł	ł÷	n g	, , ,		o t	he	r	6	2 2∧	, C (00);^	y	ς		of			}. ₽	י רי ק	م:	F	- -	کار د	, ,	h	1 - - -	7 2	. <	7	[nt	- <u>S</u>	•	•	• •	• •	•	•
2	•	ſ].	e	4		¦+		e	•	: .(C	0r	~¦	ءاه	2 کم	ii f	1	0	41	he	, 0	ר ר	ý	0	•				•	•														•		•		••••	•	0
0								• •					0	0			•							0	•	•	0			0			•	•		0			•	• •			0		0						
			•																											•																					
•																																																			
	•												•																				•					•	•												
								• •									•																•						•												
•	•	•	•											•											•													•		•								•			
	•	•					•																															•										•			
	•	•		•				• •													•	•			•			•				•	•	•				•	•								•	•	• •		
•	•			•				• •					•				•				•								•			•	•					•	•								•				
	•	•	•											•			•				•				•							•				•		•		•								•			

I. Triangulations
Recall our claim From last class: every (compact) PL
d-man; fold is PL-homeomorphic to a (tinite) d-dimensional Simplicial
Complex s.t. the link of every vertex is a PL d-1 sphere.
We will call such a simplicial complex a triangulation (of a
man: Fold)
Link of vertex v is the union of all simplices
T such that I and V share a simplex, but I
and v are disjoint. $ink(v) = $
\sim

PL Homeomorphism
A homeomorphism F: M -> N is a PL homeomorphism, it
in all coordinate charts (of the PL structures of M and N),
F is a PL homeo b/w open subsets of R4.
Two triangulations are combinationally equivalent it they
have isomorphic refinements.
Let Ti be a triangulation of Min i=lid. The e.g.
Then M, and My are PL
homeomorphic if and only it
To and The are combinatorially
equivalet.

Example	Every 2	-regular gr	aph is	a triange	lation	of a	(possil	y)	
disconnec	ted) +	mas: Fold.							
			2 4 100	copies	F St	· · · · · ·	· · · · · ·		
									• • •
· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · ·		· · · · · ·	· · · · · ·		
Example	Every	2-din si	mplicial	complex	where	each	edge		
is Cont	aired in	exactly	L triano	les is	a tric	ngulatio		9	
is cont	ained in	exactly ?	L triano	yles is man: Fold"	9 tric	ngulatio		9 	· · ·
is cont Svrface	ai-ed in (Surface)	exactly à	L triano lensioma) u	yles is man: Fold"	a tric).	ngv/atio	े व	7	
is cont Svrface	ai-ed in ("surface"	exactly à = "2 - dim	L triano .ens:ong) u	yles is mon:told"	9 1000).	ngv/afio		9	
is cont Svrface	ai-ed in (Surface)	exactly ; = "2 - dim	L triano lens:ong) c	yles is man: Fold"	9 tric).	zgv/atio		9	
is cont Svrface	ai-ed in ("surface"	exactly : = "2 - dim	L triano	yles is man: Fold"	9 (ric).	~gv/afiv		7	
is cont Svrface	ai-ed in ("surface")	exactly ?	L triano	yles is mon:Fold"	9 (ric	~gv/~fi*		7	
is cont Svrface	ai-ed in ("surface")	exactly	L triano	yles is man: Fold"	9 tric	∼g ∪ / ۹ f i •		7	

Warning PL hom not we	A sine om or pl her t we	mplicial (e hic) to a 're calling	mplex m a man:F a frion	ay be hi old, even gulation.	if the com	$(b \downarrow y_0, t)$ slex is		
Double suspension theorem IF M is any d-manifold that has the same hourology as S, then the								
double	susper	nsion of	\mathcal{M}_{I}	S ² M1	is a topo b	gica		
9+7	sphere.		· · · · · · · · · ·			· · · · · · · · · ·		
						· · · · · · · · · ·		
	· · · · · · · ·		· · · · · · · · · ·		· · · · · · · · · · · ·	· · · · · · · · · ·		

ManiFolds with boundary In defin of manifold, just replace Rd with Rd-1 x [0, 20). <u>Example</u> P P --triangulation of torus u/ one boundary component For friangulations of manifolds w/ boundary, the links of boundary points should be d-1 distrs.

Standing	implicit assumption	<u>Phase 1</u>	
Abuse of	notation "man fold"	will offen mean	friangulation of 9
(closed, ca	ompact, orientable)	man: Fold.	
But some	times not.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
If unclear,	please ask!	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · ·			
· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

I. Basic questions, and my d=3 is the best (to me)
If we want to use triangulations of manifolds as input to
computer programs designed to calculate properties of manifolds,
at the very least, we would like to recognize when a
simplicial complex is a valid friagulation.
How would we do thus?
Work recursively and "down" From d all the way to O.
Pick a vertex V and calculate link (J).
Then determine it link (US is a (d-1)-dimensional friangulation.
IF not, stop. IF yes, then decide if link(u) is a d-1
sphere. If yes, more to next vertex. Repeato
· · · · · · · · · · · · · · · · · · ·

The curse of a	uncomputability 6M	en a d-manitold, ic i	t a d-sphere?
λ.	d-sphere recognition	(d t) - dimonsional driangulation recognition	d-martild house 0.
	easy easy easy	E 939 E 73-1	e asy easy Rasy *
3 4	NP n co NPt No IDEAS	algorithmically possible Fort not ensy	Algorithmic, but Complexity Unknown
	NOT POJSIBLE ?? -		
(*): First dec (t): will c	ide if 2-manitold; the discuss noxt week	r compute Hx Usi	ng SNF on d, cellier boundary anop.

Other nice things about 3-manifolds Moise's Theorem In dimension 3 $\nabla T = P = D$ TOP = PL = DIFF.Poincaré conjecture true \vec{s} T = P = D $4 \vec{s}$ $T \neq P = D$ IF M is has homotopy groups of S³, then M=S³. 51 ZTFPCD Exotic sphones. Ocometrization V