Meeting 10.1: From TQFT to $T Q C$, a bricf history
I. Atiyah + Witten
II. Reshetikhin - Turaev + Turaev
III. Turaev-Viro + Barcett-Westbury
IV. Kitaer + Freedman
V. Freedman - Kitaev-Larsen - Wang
VI. Levin-Wen

Kitaeu's motivation for introducing toric code (and generalizations to other finite groups I will mention later) was to address Fault tolerance problem USING HARDWARE.

He doesnlt use language of TQFT directly, but was clearly inspired by it, since anyous were understood to be the "particles" that can arise in certain exotic (topological) QF Ts.
I. Aliyah + Witter

1988-Atiyah defines topological quantum Field theory.
Mathematically rigorous! Uses language of cobordisms and Functors. Inspired by work (esp.

TOPOLOGICAL QUANTUM FIELD THEORIES
by MIChaEl ATIYAH by Michael ATIYAH
\qquad
In recent years there has been a remarkable renaissance in the relation between
Geometry and Physics. This relation involves the most advanced and sophisticated ideas on each side and appears to be extremely deep. The traditional links between
the two subjects, as embodied for example in Einstein's Theory of General Relativity
or in Maxwell's Equations for Electro-Magnetism are concerned essentially with classical or in Maxwell's Equations for Electro-Magnetism are concerned essentially with classical
fields of force, governed by differential equations, and their geometrical interpretation.
The new feature of present developments is that links are being established between quantum physics and topology. It is no longer the purely local aspects that are involved
but their global counterparts. In a very general sense this should not be too surprising. Both quantum theory and topology are characterized by discrete phenomena emerging
from a continuous background. However, the realization that this vague philosophical
view-point could be translated into reasonably precise and significant mathematical statements is mainly due to the efforts of Edward Witten who, in a variety of directions,
has shown the insight that can be derived by examining the topological aspects of quantum field theories.
The best starting point is undoubtedly Witten's paper [11] where he explained the geometric meaning of super-symmetry. It is well-known that the quantum Hamil-
tonian corresponding to a clasical-particle moving_
Pub IHES (1988) of (Witten) om (geneal, not-entirelt-rigocous) supersymmetric quatum Field theory, and Segal's axioms for conformal field theory...

TQFT in a nutshell
K: a field (or other unital commutative ring...) $\operatorname{Cob}(J)$: d-dimensiomal oriented cobordism category

Objects $(\operatorname{Cob}(d))$: oriented, smooth, closed d-manifolds Mar $\left(c_{0} b(\alpha)\right)$: oriented, smooth $(d+1)$-manifolds M_{1} $w / \partial M=\sum_{0} U \Sigma_{1} . M$ is a mortises $\mu: \Sigma_{0} \rightarrow \Sigma_{1}$
Q: disjoint union
$A(d+1)$-dimensional $T Q F T$ is a " \otimes-respecting lineorization of $\operatorname{Cob}(\alpha)$," ie. a \otimes-Functor $Z: \operatorname{Cob}(d) \rightarrow \operatorname{Vec}(\mathbb{k})$
might as well assume Pinto dim.

Schematic $d=2, \mathbb{K}=\mathbb{C}$

Hernition and unitary TQFT
If $k=\mathbb{C}$, we can ask , adjoint.

$$
z(-\mu)=z(\mu)^{k^{x}}
$$

Mw/ reversed orientation ad swapped
boundary pieces
For all M. If this holds, call the TQFT hercuition It is unitary if moreover, the pairing

$$
\phi \mapsto
$$

$$
\begin{array}{r}
z(\Sigma \times I): z(\Sigma) \otimes z(-\Sigma) \rightarrow z(\phi)=\mathbb{C} \\
\\
z(\Sigma)^{*}{ }_{\text {deal }}^{*}
\end{array}
$$

If this prions is posithe definite and z is Heccution, then we say z is unitary. If Z is unitary, the $Z(\Sigma)$ is a Hilbert space

Egg. (Tori code)

$$
z(\Sigma):=\operatorname{span}_{\mathbb{C}} H_{1}(\Sigma ; \mathbb{Z} / 2) \text { if } \Sigma \text { connoted }
$$

$$
z\left(\Sigma_{1} \cup \Sigma_{2}\right):=z\left(\Sigma_{1}\right) \oplus z\left(\Sigma_{2}\right)
$$

If $\partial M=\Sigma_{0} \cup \Sigma_{1}$, then

$$
z(n): z\left(\Sigma_{0}\right) \rightarrow z\left(\Sigma_{1}\right)
$$

lineorizes the correspondence

$$
\begin{array}{r}
\mu^{*} \leq H_{1}\left(\Sigma_{0} ; \mathbb{Q} / 2\right) \times H_{1}\left(\Sigma_{1} ; \mathbb{Z} / 2\right) \\
\mu^{*}=\left\{(\alpha, \beta) \mid[\alpha]=[\beta] \text { in } H_{1}\left(\mu_{i} \mathbb{Z} / \alpha\right)\right\}
\end{array}
$$

Also in 1988, Aliyah asked
Is there an intrinsically 3 -dimensional explanation For why Jones polynomial is an invariant of Knots?

Jones had discovered it in 1984. Understood only diagrammatically at that time, eeg. as a normalization of Kauffiman bracket

$$
\begin{aligned}
& \langle O\rangle=-q^{1 / 2}-q^{-1 / 2} \\
& \langle Y\rangle=-q^{1 / 4}\langle)(\rangle-q^{-1 / 4}\langle\backsim\rangle
\end{aligned}
$$

1989- Witter argues (not 100% rigorously) that for q a coot ot unity, the Kauffimen bracket

a $(2+1)$-dim TQFT.
Based on quantizing
Chern-Simons theory \dagger w/
Quantum Field Theory and the Jones Polynomial * gauge group $G=$ CU($\alpha)$.

Edward Witten **
Different roots of unity
School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA
yield different TQFTS.
Abstract. It is shown that $2+1$ dimensional quantum Yang-Mills theory, with an action consisting purely of the Chern-Simons term, is exactly soluble and gives a natural framework for understanding the Jones polynomial of knot
theory in three dimensional terms. In this version, the Jones polynomial can be generalized from S^{3} to arbitrary three manifolds, giving invariants of three generalized from S^{3} to arbitrary three manifolds, giving invariants of three
manifolds that are computable from a surgery presentation. These results shed a surprising new light on conformal field theory in $1+1$ dimensions.
II. Reshetikhin-Turaev + Turaev

Witter's construction not rigoras. Eventually made cigorous, but in the meantime Reshetithin and Turaed did give a mathematically rigorous construction using quasi-triangular Hopf aloelcas and Diagrammatic (or skein) constructions of $T Q F T_{S}$.
The Witt -Reshetikhin-Turaev Uses the category of Finite dimensional represutaties of a quaci-triangular Hopt algebra, When one use $U_{7} s l_{21}$ one cecoves the Jones-Kauftiman TQFT for that specific q.

Turaeu genecalized furthe to arbittery
Modular Tensor Categories.
(If H is q.tr Hopt algebra, the $\operatorname{Rep}(H)$ is a modular tusar catejory.)
It turns at, once-extended $(\alpha+1)$-dimusional $T Q F_{T_{s}}$ ve entirely determird by a modular fersor category (w / one nddition-l small choice) Recertish theoran of Douglos, Schomer-Priess, Vicary, et alo..

A ore-extend TQFT is a "Useal" (dxt-dimesinal TQFT that also associontes data to evary $(\alpha-1)$-minitu in functorial way...
Making this precie involues "higher teasor categorirs"
Erge

$$
M^{3} \mapsto Z(\mu): Z\left(\partial \mu_{0}\right) \underset{\sim}{\sim} Z\left(\partial \mu_{1}\right)
$$

$\sum \mapsto$ vector spere $z(\Sigma)$
$S^{\prime} \rightarrow$ Category $z\left(S^{\prime}\right)$
it is a moduk tusor category...

One can study even furth extuded TQFTs... e.g. fully-extuded TQF T
$\partial+1$ monitol $\partial \longrightarrow$ liven unp α maitold \leadsto vecter space $\alpha-1$ manitold \leadsto category d-2 ma.fold $\rightarrow 2$-category
cF. poit $\longrightarrow d$-category
Beez-Doln cobordism Lupathexis proved by Lurie.
II. Turaev-Viro + Barrett-Westbury

Turgeu-viro showed (1993?) how to construct a fully extuded $3-d$ TQFT from a modular tessor category.
Dorlt get anything that Reshetikhsn - Turaeu construction doesn 4 already provide,
Barrett-Westbury defaned spherical teisor categones, and showed Turapu-Viro -worles-1 For ary sploricy fusor categery

Turaeu-Viro + Borret-Westbery:
\longrightarrow spherical tusestegory C
$S^{\prime} \longmapsto$ Drifil'd coter Z (C)
(always a modular tertor category)
$\sum \mapsto$ Vector spore $Z(\Sigma)$
(agreis $R-T$ castrution for Z (C) $)$

Eg

$$
C=G-V_{e c}
$$

the category of σ-graded finite dinsul vector spaces over \mathbb{C}.
Object in C looks lite

$$
V=\bigoplus_{g \in G} V_{g}
$$

where V_{g} is a Fid vert spare.

Morplism

$$
F: V=\underset{g \in G}{\nrightarrow} V_{g} \rightarrow W=\underset{h \in G}{\oplus} W_{h}
$$

is a sum of luan emps

$$
\begin{aligned}
& F_{g}: V_{g} \rightarrow W_{91} \\
& F=\underset{g \in G .}{\oplus} F_{g}
\end{aligned}
$$

$$
\begin{aligned}
& V \otimes W=\left(\underset{g}{\oplus} V_{g}\right) \otimes\left(\underset{h}{\oplus} w_{n}\right) \\
& =\underset{x}{A}(V \otimes w)_{x} \\
& (V \otimes W)_{x}=\underset{\substack{g_{h}, g h}}{ } V_{g} \otimes W_{h} \\
& =\underset{g}{\bigoplus} V_{y} \otimes W_{g^{-1} x}
\end{aligned}
$$

Kitaev's preper, esp 22^{α} Lrll $_{1}$ is essatially building the Turieu-Viro-Barrett-Westbry TQFi rssociated to G-Vec.
Toric code is special case $G=x / 2$.

