Meeting 10.1: From TQFT to TQC, q Brief history	•
I. Atiyah + Witten	
I. Reshetikhin - Turgev + Turgev	•
II. Turgev - Viro + Barrett-Westbury	•
IV. Kitaer + Freedman	•
I. Freedman - Kitaev - Larsen - Wang	•
II. Levin-Wen	•
	•
· · · · · · · · · · · · · · · · · · ·	•
· · · · · · · · · · · · · · · · · · ·	•
	•
	•

Kitaru's motivation for introducing toric code
······································
(and generalizations to other finite groups I will
mention later) was to address tault tolorance
problem USING HARDWARE.
He doesn't use laguage of TQFT directly, but
was clearly inspired by it, since anyous were
understood to be the "particles" that can arise
in certain exotic (topological) QFTS.
· · · · · · · · · · · · · · · · · · ·
······································

I. Atiyoh + Witten	· · · · · · · · · · · · · · · · · · ·
1985 - Atiynh defines	TOPOLOGICAL QUANTUM FIELD THEORIES by Michael ATIYAH
topological quantum Field theory. Mathematically rigorous! Uses language of	To Read Thom on his 65th birthday. J. Introduction In recent years there has been a remarkable renaissance in the relation between Geometry and Physics. This relation involves the most advanced and sophisticated ideas on each side and appears to be extremely deep. The traditional links between the two subjects, as embodied for example in Einstein's Theory of General Relativity or in Maxwell's Equations for Electro-Magnetism are concerned essentially with classical fields of force, governed by differential equations, and their geometrical interpretation. The new feature of present developments is that links are being established between <i>quantum physics and topology</i> . It is no longer the purely <i>local</i> aspects that are involved but their global counterparts. In a very general sense this should not be too surprising. Both quantum theory and topology are characterized by discrete phenomena emerging from a continuous background. However, the realization that this vague philosophical view-point could be translated into reasonably precise and significant mathematical statements is mainly due to the efforts of Edward Witten who, in a variety of directions, has shown the insight that can be derived by examining the topological aspects of quantum field theories.
cobordisms and Functors.	The best starting point is undoubtedly Witten's paper [11] where he explained the geometric meaning of super-symmetry. It is well-known that the quantum Hamil- tonian corresponding to a classical particle moving on a Riemannian manifold is just P.J.B. IHES (1988)
of Witten) on (general, not-entirely-rigorous) supersymmet	ric grating
Field theory, and Segel's axia	· ·

<u>TQFT in a nutshell</u>
K: a Field (or other unity commutative sing)
Cob(d): d-dimensional oriented cobordism category
Objects (Cob(d)): oriented, smooth, closed d-manifolds
Mor ((ob (d)): oriented, smooth (d+1)-manifolds M,
w/ dM= ZoU Zi. M is a morphism
$\mathcal{M}: \mathcal{L}_{0} \mathcal{L}_{1}$
Q: disjoint union
A (d+1)-dimensional TQFT is a "Orrespecting linearization
of (ob(d), i.e. q & - Functor Z: (ob(d) -> Vec(1k)
might "> vell assume Finite d'un.

Schematric d=21 lk=C (a a) 21 (-) 2(2) the F.d. vector spine over C M^{3} $| \neg Z(M): Z(\Sigma_{o}) \neg Z(\Sigma_{i})$ J DZ. linear map

Hermitian and Unitary TQFT
If k= a, we can ask adjoint
· · · · · · · · · · · · · · · · · · ·
$\frac{2}{5}(-M) = \frac{2}{5}(M)^{*}$
M w/ reversed orientation and supped
For all M. IF this holds, call the TRFT hormitis
For all M. IF this holds, call the TQFT hormites It is unitary if moreover, the pairing
It is unitary if moreover, the pairing

50000 5,×1- $2(\Sigma \times I): 2(\Sigma) \otimes 2(-\Sigma) \longrightarrow 2(\phi) = \mathbb{C}$ 2(5)× deg) Vector grad IF this priving is positive definite and 2 is Hermitian, then we say Z is unitary. If Z is unitary, the Z(S) is a Hilbert space

E.g. (Toric Code) 2(2):= Span H, (S; Z/2) if I connacted $2(\Sigma_{1} \sqcup \Sigma_{2}) = 2(\Sigma_{1}) \otimes 2(\Sigma_{2})$ IF JM = Lou Di, then $2(M): 2(\Sigma_{n}) \rightarrow 2(\Sigma_{n})$ linearizes the correspondence $M^* \in H_1(\mathcal{L}_0; \mathbb{Z}/2) \times H_1(\mathcal{L}_1; \mathbb{Z}/2)$ $M^* = \left\{ (\alpha, \beta) \mid [\alpha] = \mathcal{L}\beta \right\} \text{ in } H_1(M; \mathbb{Z}/2) \right\}$

Also in 1988,	Atiyah asked		· · · · · · · · · · · · · · ·	· · · · ·
	an intrinsically		a) explanation	· · · · ·
	Jones polynomia			· · · · ·
$K_{10}+s?$	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·		· · · · ·
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Jones had di	Krowered it i	~ 1954 Und	erctood only	
Jones had di diagrammatical				F
diagrammatical	lly at that fi			£
diagrammatical Kauffman bri	lly at that fi acket			£
diagrammatical Kauffman bri $\langle 0 \rangle = -q^{1}$	$ll_{y} = t$ that ti acket $l_{2} = q^{-l_{2}}$	ime, erg. as		£
diagrammatical Kauffman bri $\langle 0 \rangle = -q^{1}$	lly at that fi acket	ime, erg. as		£

1989 - Witten argues (not 100% rigorously) that for of a cost of unity, the KowfFman bracket Communications in Cay be Used to build Commun. Math. Phys. 121, 351-399 (1989) Mathematical Physics © Springer-Verlag 1989 g (2+1)-Jim TQFT. Based on quantizing Chern-Simons theory w/ Quantum Field Theory and the Jones Polynomial * gauge group G= SU(2), Edward Witten ** School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, Different roots of unity NJ 08540, USA yield different TRFTS. **Abstract.** It is shown that 2 + 1 dimensional quantum Yang-Mills theory, with an action consisting purely of the Chern-Simons term, is exactly soluble and gives a natural framework for understanding the Jones polynomial of knot theory in three dimensional terms. In this version, the Jones polynomial can be generalized from S^3 to arbitrary three manifolds, giving invariants of three manifolds that are computable from a surgery presentation. These results shed a surprising new light on conformal field theory in 1 + 1 dimensions.

I. Reshetikhin-Turnev + Turnev
Witten's construction not rigorous. Eventually made
(igerors, but in the meantine Reschetikhin and Turoa
did give a mathematically rigorous construction
Using quasi-triangular Hopf algebras and
diagrammatic (or <u>skein</u>) constructions of TQFTs.
The Witten-Resherikhin-Turaev Uses the category
of finite dimensional representations of a guari-triangular
Hopf algebra. When one user Ug sly, one recover
the Joney-Kauffman TQFT for that specific q.

Turner generalized Further to arbitrary
Modular Tensor Categories.
(IF H is q.tr. Hopt algebra, the Rep (H) is q modular tusir category.)
It turns at, once-extended (2+1) - dimissional TQFTS are entirely determined by a modular fersor
Category (w/ one addition-1 smill choice) Recertish theorem of Douglas, Schoner-Priese,
Vicary, et al

A once-extend TQFT is of "usual" (2+1)-dinas: oper
TQFT that also associates data to every (2-1)-mitte
in functorial way
Making this precise involves "higher tensor cartegories"
$ \underbrace{\exists : ::}_{M^3} M^3 [\longrightarrow 2(M) : 2(\partial M_0) \xrightarrow{\sim} 2(\partial M_1) \\ \lim_{l \to \infty} \lim_{l \to $
2 - Vector spre Z(Z)
S' 1-> Category Z(S') it is a module tensor category
· · · · · · · · · · · · · · · · · · ·

One can study	eve	Furth extuded	TQFTs
e-g- Fully-exte	nded	TQFT	· · · · · · · · · · · · · · · · · ·
2+1 monited 2			
		vector space	
d-1 mon: told			
d-2 Martold		2-category	
	. .	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · ·	$\left(\begin{array}{c} \cdot \cdot \cdot \\ \cdot \cdot \end{array}\right)$	
		d-category	· · · · · · · · · · · · · · · · · ·
Baez-Dolan colordi	sus Lyp	stheris proved	67 Lurie.

II. Turgev- Viro + Barrett-Westbury
Turner-Viro shared (1993?) you to Construct
a fully extended 3-d TQFT from a
modular tensor category.
Dor't get anything that Reshe tikhin - Turger Construction
doesn't already provider
Barrett-Westbary deFined Spherical tersor
Categories, and showed Turapu-Viro Turaks'
For any splarica) (user category

5' 1-> Dritel'é ceter 2(C) (always a modular teator catagory) 5 F> Vector space 2(5) (9greus R-T construction For 2(C))

E_{g} $C = G - V_{ec}$	
the category of G-graded Finite diman) over D.	vector spaces
Object in C looks litze	
$V = \bigoplus_{g \in G} V_g$	· ·
where Vg is a F.J. Vect. space.	. .

Morphism $F: V = \bigoplus_{g \in G} V_g \longrightarrow W = \bigoplus_{i_i \in G} W_i$ is a sum of live anaps F3: Vg ~ Wg1 $F = \bigoplus F_g$ geG.

 $V \otimes W = (\bigoplus_{g} V_{g}) \otimes (\bigoplus_{h} W_{h})$ $= \bigoplus (V \otimes W)_{\chi}$ $(V \otimes W)_{X} = \bigoplus_{\substack{g,h\\gh=X}} V_{g} \otimes W_{h}$

· · ·				Grif, is ess iro-Barrett	
· ·	TQF	T 9550	oc:ated to	G-Vec.	
• • • •	(oric	(ode	is special)	C956 6 =	$-Z/\lambda$.
· ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	
· ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	
• •					
				· · · · · · · · · · · · · · · · · · ·	
- ·	· · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	