Me	eting		Topolog	ica) g	vartum con	rputing, I	
I.	Quant	um cil	cuits i	n si le	extended	TQFTs	
II.	Which	TQF	Ts are	BQP.	-Universal?		
	· · · · · · ·		· · · · · · · ·	· · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·
							· · · · · · · · · ·
• • • •	· · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·
· · · ·	· · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · ·	· · · · · · · · · · ·		· · · · · · · · · · ·
· · · · ·	· · · · · · ·	· · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · ·
	· · · · · · ·						· · · · · · · · · ·
· · · ·			· · · · · · · ·	· · · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·	

I. Quantum circuits inside extended TQFTs
Last time: String and loop operators in toric code are
insufficient to build on Universal quantum computer.
However, the idea is useful because string and loop
operators are "topologically protected" operations.
Are there variations of toric code construction
whose topologically protected operations are
power Ful enough to approximate arbitrary quatures
circuits?
· · · · · · · · · · · · · · · · · · ·

Freedman, Larsen, Wang (2007) showed aswer is
γ_{E} S.
Specifically, they use the "Jones TOFT with q= e ^{lxi/s} " This TOFT has other names:
· SU(d) Chern-Simons at level 3 · Witten-Reshetikhin-Turnev theory for Ugsl, g=e ^{lini/s}
expected anyon statistics for fractional quatum Hall effect at certain Filling fraction

We're going to work through the Freedman-Losen-Way
Construction flis week.
First, we need to understand Formal properties of Unitary
once extended (2+1) - dimensional TQFTs (*) This will
allow us to formulate general conditions that allow a
TQFT to be used to simulate quatum circuits.
Then, we will need to check the Jones TQFT stisting
these conditions.
· · · · · · · · · · · · · · · · · · ·
(A) I'll say some things later about those restrictions. For now, TQFTs are all Unitary.

RECALL: a (non-extended/ Atiyah style) Unitary (n+1)-dimensional TQFT is a &- Functor From Cob (2+1) to Hilb & O-category & Finite dimensional Hilbert spring (a) surface SH9 Z(S) En Hilbert space $S_{0} = S_{0}$ $M \rightarrow Z(M): Z(S_{0}) \otimes Z(S_{0}) \rightarrow Z(S_{0})$ $S_{0} = S_{0}$

Reasons to like Atigah style (2+1)-dim TRFTs: · Good source of C-valued invariants of closed 3-man Folds Z(M) is a liner map C > C, hunco Z(M) E C. $\begin{array}{ll} | f M^{3} & is & close \partial_{1} \\ fhen & \partial M = \phi \end{array}$ $\neq Z(M^3) \neq Z(N^3)$, then M3 & N3,

Reasons to like Atiyah style (I+1)-dim TRFTs: · TRFT axions allow us to compute these invariets via (cut ad poste) e.g. From a Heegaard splitting. IF M= HOLIFI, where Ho and HI are two 2Ho= 2H, gues g had lebodies, me can divide and conqueri $\frac{1}{2(M)} = \frac{1}{2(H_1)o2(H_0)}$ M= [000]E, (/ H. ///

Get representations of mapping class gramps of class
surfaces from a (2+1) - TQFT. Called quatur
representations of mapping class groups.
IF S is an oriered surface,
MCG(S) := Homeo+ (S)/isotopy
Intuition: MCG(S) is "orientation - preserving homeomorphism,
Modulo isotopy.
MCG(S) = Homeo+ (S) / Gomotopy
$\stackrel{\sim}{=}$ D: FF.o, (S) / isot-py
= Homeon (S)/Normal subgroup of homeomorphiling isotopic to identity

Fig: S-OS are instapic iF fl	μ. μ	exist	ά 	· · · · ·	· · ·
H: Sx(o,i) -> S	· · · · ·	· · · · ·	· · · · ·	· · · · ·	· · ·
such flost:	· · · · ·	· · · · ·	· · · ·	· · · · ·	· · ·
(i) $H(x, 0) = F(x)$ $\forall x \in S$	· · · · ·	· · · · ·	· · · · ·	· · · · ·	· · ·
(i) $H(x,1) = g(x) \forall x \in S$	· · · · ·	· · · · ·	· · · · ·	· · · · ·	· · ·
(Fit) H(xit) is a homeomrplism	- ک	~	For	each	· · · ·
· · · · · · · · · · · · · · · · · · ·	- - -		For	erch	· · · · · · · · · · · · · · · · · · ·
(Fit) H(xit) is a homeomrplism	- 2	ے ج	For	erch	
(fit) H(x,t) is a homeomrplism fixed t.	- 2		For	each	

Building quatum reps from TQFT? Given Z, surface Sr and homeomorphism $F: S \rightarrow S_{1}$ (a build $2(F): 2(S) \rightarrow 2(S)$ by taking the mapping cylinder of F: $1^{2}(\pm) = 2(M_{\pm})$ ()) S IF Fig re isotopie, Glue Sx {13 to Susing F MF = Mg, Hus, by EISM MF Sx [01] = Kions of TOFT, $\{s_{2}, c_{1}, c_{2}, c_{3}, c_{4}, c_{1}, c_{1},$

Mopping cylinder of F: X -> Y $M_{\pm} := X \times [oi] \sqcup Y / (x, 1) \sim f(x)$ e.g. X= S', N= Ept3, F constit ango: X

Gian TQ	F7 Z:	$(ob(d+1) \rightarrow b$	ec,
		r he set	
Z: M(5L (Z(S)).	
· · · · · · · · · · · · · · · · · · ·	C	alled a zcatur	representia.
Warring: h	1 mare Co	metal axiom	s, might
Warring: h only ge	t a proj	ective rep	resertation.
	· · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
only ge	/ 9 [[]	ective rep	(esertin,

	is Unitary, then Later, they may only ice :)		
5:	McG(S) →	PU(2(〔 \$ 〕)

Can calculate 3-manifold invariate using the quatum representations Suppose M is a 3-fold formed by twisting the standard Heegaard splitting of S3 by genus of surface trist three curves using FEMCG(S). Lemmi it Civicg are a complete due system, and [F] EM(G(S) is represented by FI then f(c,),..., f(cg) forms another complete dists system, independent of [epresentine].

	$9 S:g C \cap C \cap C$	
	(H1) ° Z(F) - Z(F	· · · · · · · · · · · · · · · · · · ·
This exprising	2(M) in trous	ot 12
quatan repre	es etgtin	

• •	0 0		0 0		• •			• •		• •	0	•		• •		• •	• •		• •			• •		•	 0 0
•					• •		• •	• •		•		•		• •		• •	•		• •	•		• •		•	• •
•					• •		•	• •		•				•		• •	• •	•	• •	•		• •		•	 • •
•	• •		• •		• •		•	• •		•		•		• •		• •	• •	•	• •	• •		• •		•	 • •
•	• •		• •		• •		•	• •		•		•		• •		• •	• •	•	• •	• •		• •		•	 • •
•	• •		• •		• •		• •	• •		•		•		• •		• •	• •	•	• •	• •		• •		•	 • •
•			• •		• •		•	• •		•				• •		• •	• •			• •		• •		•	 • •
•			• •		• •		•	• •		•				• •		• •	• •			• •		• •		•	 • •
•			• •		• •		•	• •		•				• •		• •	• •			• •		• •		•	 • •
•			• •		• •		•	• •		•				• •		• •	• •			• •		• •		•	 • •
	•		• •		• •		• •	• •						• •		• •	• •		• •			• •			 • •
	•		• •		• •		• •	• •						• •		• •	• •		• •			• •			 • •
	•		• •		• •		• •	• •						• •		• •	• •		• •			• •			 • •
	•		• •		• •		• •	• •						• •		• •	• •		• •			• •			 • •
	•		• •		• •		• •	• •						• •		• •	• •		• •			• •			 • •
•			• •		• •		•	• •		•				• •		• •	• •			• •		• •		•	 • •
•			• •		• •		•	• •		•				• •		• •	• •			• •		• •		•	 • •
•			• •		• •		•	• •		•				• •		• •	• •			• •		• •		•	 • •
•			• •		• •		•	• •		•				• •		• •	• •			• •		• •		•	 • •
•			• •		• •		•	• •		•				• •		• •	• •			• •		• •		•	 • •
•			• •		• •		•	• •		•				• •		• •	• •			• •		• •		•	 • •
•	• •		• •		• •		•	• •		•		•		• •		• •	• •	•	• •	• •		• •		•	 • •
•	• •		• •		• •		•	• •		•		•		• •		• •	• •	•	• •	• •		• •		•	 • •
•	• •		• •		• •		•	• •		•		•		• •		• •	• •	•	• •	• •		• •		•	 • •
•	• •		• •		• •		•	• •		•		•		• •		• •	• •	•	• •	• •		• •		•	 • •
•					• •		•	• •		•				•		• •	• •	•	• •	•		• •		•	 • •
•	• •		• •		• •		•	• •		•		•		• •		• •	• •	•	• •	• •		• •		•	 • •
•	• •		• •		• •		•	• •		•		•		• •		• •	• •	•	• •	• •		• •		•	 • •
•	• •		• •		• •		•	• •		•		•		• •		• •	• •	•	• •	• •		• •		•	 • •
•	• •		• •		• •		•	• •		•		•		• •		• •	• •	•	• •	• •		• •		•	 • •
•	• •		• •		• •		• •	• •		•		•		• •		• •	• •	•	• •	• •		• •		•	 • •
	•		• •		• •		• •	• •						• •		• •	• •		• •			• •			 • •
	•		• •		• •		• •	• •						• •		• •	• •		• •			• •			 • •
•					• •		• •	• •		•		•		• •		• •	• •		• •	• •		• •		•	• •

Rough pass at TQC:
Find a Unitary TQFT whose quatum representation For some surface S is dense inside
PU(2(S)).
Interpretation: Hilbert space 2(S) is quatum mensery
 Action of a mapping class fEMCG(S) yields q quantum circuit 2 (F): 2(S) -> 2(S).
q quature circuit 2 (F): 2(S) > 2(S). K to write precise requires choosing guarators of MCG(S),

Theorem (Lickorish-Wallace) MCG(S) is generated by Dehn twists along a specific set it finitely many simple closed curves: gtg-2tg= 3g-2 total generators

Dei bn twist · · · · · Ty: cut N(r), and glue back in with

Suppose $Z: M(G(S) \rightarrow PU(Z(S)))$ is dense, and let $F = \prod_{j=1}^{n} T_{j}$. Applying 2 to F yields $2(F) = 2(T_{\gamma_1}) \circ 2(T_{\gamma_2}) \circ - \circ 2(T_{\gamma_1}) \circ 2(T_{\gamma_2}) \circ - \circ 2(T_{\gamma_1}) \circ$ AVEUL PICTURE

Using quature representation of MCG(S), we could try to simulate circuite.
However, calt be made correct yet, b/c need
to decompose 2 (S) into tensor products
of subspaces in order to "localize" gub.its
into different regions of surface.
Need extended TQFT!