Me	eting	11.2:	Topolog	yica) g	vatur con	puting, III
I.	Quan	tum c:	revits i	n si de	extended	TQFTs, continued
II.	Which	TQF	Ts are	BRP-	-Universal?	
			· · · · · · · ·			
· · · · ·	· · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
				· · · · · · ·	· · · · · · · · · · · ·	
· · · · ·			· · · · · · · ·	· · · · · · ·		
· · · · ·	· · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · ·	· · · · · · ·	· · · · · · · ·		· · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
				· · · · · · ·	· · · · · · · · · · · ·	
			· · · · · · · ·	· · · · · · ·	· · · · · · · · · · · ·	

Last time: can try to use quatum representation of mapping class group of (closed) surface determined by a Unitary TRFT to process quantum information. Problem: don't have any clear my to decompose flibert spre 2(S) its tosor product of subspaces. So, unclear hour to encode quatum circuits... One (unhelpful) ideq: use disconnected surfaces? Quatum representation would generate entaglement.... $2(0 \sigma)g2(0 \sigma)g2(0 \sigma)$ Solution: use extended TRFT!

EXTENDED TOUETS have even nicer cut and paste
properties
In addition to computing Z(M2) by cutting M3 slong
a surface, we can cut surfaces along curves to compute
their state = paces.
To make precise, "extended TQFTs come equipped with
a finite set of $colors$ $C = \{l_1, 2, \dots, r\}$.
We then define the C-colored, once extended (2+1)-dimensional
Cobordism category C-Cob(2+1).
Contains Cob(2+1) as a subcategory.
Note: what follows is imprecise and incorrect, probably. Why? Don't way
to define extended TRFT or modular tensor category in full detail

C-Cob(2+1) includes new objects: surfaces with (oriented) boundary and oriented marked points, with all boundary components and marked points Objects are "C-colored Surfaces 3.7 w/ maked paints " _____(____ ___) r=10, ie. $C = \{1, 2, 3, \dots, 10\}$

And new morphisme: 3-manifolds with property embedded, C-colored trivalent, oriented ribbon grouphs Nect to allow 3-minut V: Hn "corners.") Technically also need to color trivaled vertices by Note: anothe Morphicus only compose when boundary coloring are compatible

Ribber graph? Ribbon groph Normal grouph U.M.Carter Why? Up to isotopy tel bondary

```
Celition
```

	As a	For 0 -	Usual/ Functor	unextended	ταρτ _ς ι	an extend	ed VTQF- Unitery	ی: ۲
		5	: C-	(ob (2+1)	> H:	<i>Ь</i> .		
· · · · ·							· · · · · · · · ·	
· · · · ·	· · ·	· · · · ·	· · · · · ·		· · · · · · · · · ·		· · · · · · · · · · · ·
· · · · ·	· · ·				· · · · · · · · · ·		· · · · · · · · ·	· · · · · · · · · · · · · ·
							· · · · · · ·	

In addition to all the axious for Atigah TQFT, an extended TQFT includes axioms that require functoriality w.r.t. culting/pasting of C'colored surfaces. Most important for our purposes: $2\left(\frac{1}{2}\left(\frac{1}{2}\right)^{3}+\frac{1}{2}\right)$ $=\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{3}+\frac{1}{2}\right)\otimes 2\left(\frac{1}{2}\left(\frac{1}{2}\right)^{3}+\frac{1}{2}\right)$ $=\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{3}+\frac{1}{2}\right)^{3}+\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{3}+\frac{1}{2}\right)$ GLUING AXIOM

Cutting/pasting commute: $f''' = \int_{1}^{2} \frac{1}{2} \left(\frac{2}{2} - \frac{2}{2} \right) \otimes \frac{1}{2} \left(\frac{2}{2} - \frac{2}{2} \right) \int_{1}^{2} \frac{1}{2} \left(\frac{2}{2} - \frac{2}{2} \right) \frac{1}{2} \left(\frac{2}{2} - \frac{2}{2} \right)$ $\frac{2}{2}\left(\frac{1}{2}\right)^$ $\begin{array}{c} 112 \\ \text{Cut alms} \\ \text{$ along cy

Glving axious allows to specify elements of Z(S) by labelling a complete disk system of S with or I tions and elements of C This yields a vector 2 ((0 0

Note, erg. Z(Din) is Indimesional. The period glue tos yhr. The Jields - Croolored surface homeomorphic to S.

The $Z(S) \cong Z(S) \otimes Z(DD)$ most la 1-dimensional

Another axiom: the color 1 is special と (enove) points labelled c-p off bandaries a Se

Gluing axioms allow us to build models of circuits. Hire's one based on closed surfaces. g $\left\{ \begin{array}{c} a \\ b \\ \vdots \\ b \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ \vdots \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ \vdots \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ \vdots \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ \vdots \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ \vdots \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ \vdots \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ \vdots \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ \vdots \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ \vdots \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ \vdots \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\ a \\ \end{array} \right\}$ $\left\{ \begin{array}{c} a \\$ 60 Given 2 and S, ve "Tocalize" quertum rep of MCG(S) along the Sigs.

Vin gluigistate in 2(S) lies in a subspace of the form $2(S_1, c_1) \otimes 2(S_{21}, c_2) \otimes \cdots \otimes 2(S_{21}, c_1) \otimes 2(T_1, c_{11}, c_{21}, \cdots, c_n)$ $\begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \quad \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$ dh 6 102 sphre L/ h disks removed

where $\mathcal{Z}\left(\mathcal{G}_{i_{1}}c_{i}\right)=\mathcal{Z}\left(\left(i_{2}\right)i_{2}\right)\mathcal{G}$ $2(T_{1}c_{1},c_{n})=2(COO)$

Z(S) is	spanned by subsp	occes of form
₹(>,, c,) Ø	≥(S2, C,) Ø ··· Ø ≥(S2	T_{1} ch) $\otimes Z(T_{1}$ ch ch ch)
as we ve	ar_1 c_1 's in C =	$= \{ 2 \}_{1}, 2,, r \}_{1}$
· · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·		

Setting up circuits Varias ways to do it ---Let's Fix one subspace, i.e. this one. Z(S, c) ⊗ Z(S2, c) Ø ··· ⊗ Z(S, c) ⊗ Z(T, c, c, ···, c) Look at $\Gamma = \Gamma(c) \leq M(G(S))$, the subgroup that preserves this subspace.

Dema trists along orange curves generate MCG(S) dy

Another approach: Use braids Consider disk Dn(c) n points all colored by c and boundary colored by 1: $\begin{pmatrix} + & + & + & + \\ c & c & c & c \end{pmatrix} D_{n}(c)$ Bu acts on Z(Du(c))

Fix K, and consider the Copies of Dk(c) glued together along boundary erg: K=3 <- (c) Ŕ B_{L} $A D_{L}$ (c).

2 (Dty (c)) Contris of @'s of 2 (DKG (c)) - - $\mathcal{Z}(D_{k}(c)) \otimes \mathcal{Z}(D_{k}(c)) \leq \mathcal{Z}(D_{ky}(c)).$ Con use subgroup of Bres that preserves this subspace to build circuits. What circuite can me simulate?

II. Which TRFTs are BRP-Universal?
(Should assume TQFT is unitary and extended.)
Interasting question in all dimensions.
Has received most attention in dimension 2+1.
$\mathcal{W}_{\mathcal{H}_{\mathcal{H}}}$?
· In dimensions 23, too weak
· h dimensions 73, poorly understood. Expected
to be too weak if "fully extended"
· In dimension 3, extended TQFTs all come from
modular tensor contegories via Reshetikhin-Turner
construction. (Combinatorial) - ish

Key guest:	ion give	2, are three colored	· · ·
Surto	reus Supac	quatures representations are	
derse	ć~ P	$\mathcal{V}(\mathcal{Z}(S))$?	
Forsue.	C'S Yes,	you can simulate / approximit	
			- · · ·
(via Solova	ig - Kitgov a	d additional fricty) gristing	
(via Solova quatum	ry - Kitgov a circuitk.	d additional tricty) gristing	
(via Solova quatum	c;rcuitc.	d additional tricty) gristing	
(via Solova quatum	ry - Kitgov a circuitk.	2 additional tricty) gristing	