Meeting 12.2: Topological quantum computing, IV I. Universality from density of quantum representations of braid groups

Fix a C-colored extended unitary $T Q F T \quad Z$ and a color $X \in C \quad$ (Secretly, X is a simple object in the unitary modular tensor category determined by z).
For convenience:
Assure X is "self dual 1" meaning z treats colored point's and -0 as identical
and also.

Eng. the "special" color 1 is self dual. But we will wont

$$
x \neq 1
$$

Define Hilbert space: $c \in C$

this disk w/ in colored points will be denoted D_{n}^{c}.
B_{n} acts on $Z(n i X, c)$:
es. $n=4$
inv (jilin
 $w /$ "Slack board Framing" iss. "no twisting"

Tact: bloxtboord Framing convention

Problem: Drawing ribbons is annoying
Solution:

Warning: No Reidemester 1-move!

Consider $D_{2 k}^{\prime} \subseteq S_{2 k}$-sphere $w / 2 k$ colored points, and this splore as ∂ of a 3-call. B^{3}
 $E \cdot g k=2$ Remark: Tons tricot is why we assume X is self-dual.

Every k-tangle T in B^{3} yields a linear map

$$
z(T): \mathbb{C} \longrightarrow z\left(S_{2 k}\right)_{1}
$$

hence, a vector $|T\rangle$ (namely, $Z(T)(1))$ in

$$
z\left(S_{2 k}\right) \cong z\left(2 k_{i} x, 1\right)
$$

Using this, have several vectors from "planar matching" tangles

$$
k=2
$$

$$
k=3
$$

Fix your favorite two crossingless k-tangles, eng.

such that $|T\rangle$ and $|S\rangle$ linearly independent Wite

$$
H_{k}=\operatorname{span}_{c}\{|\tau\rangle,|s\rangle\} \leqslant z(2 k i x, 1)
$$

Morally: wat to use $|T\rangle$ and $|s\rangle$ as computational basis states.
2 issues: orthogonal? normalized?

OF course $\left.H_{k} \cong \mathbb{C}^{2}=\operatorname{spanc}\{|0\rangle, 11\rangle\right\}$, but choose the isomorphism so $|T\rangle$ is proportions to $|0\rangle$, ie.

$$
|0\rangle:=\frac{|T\rangle}{\sqrt{\langle T \mid T\rangle}} \text { w this wont us! cone back to }
$$

Let $|1\rangle$ be an orthonormal, eng. Graham-Schmidt on $|T\rangle,|s\rangle$.
H_{k} with these two basis vectors will be our quit inside of $Z(2 k ; X, 1)$.

Gates? Well, any dense subset of $U\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$ will be quantum universal.
So: should consider $B_{4 k}$ action on $Z(4 k, X, 1)$, Since

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong H_{k} \otimes H_{k} \leqslant z(\alpha k ; x, 1) \otimes z(\alpha k ; x, 1) \leq z(4 k ; x, 1)
$$

IF quatum representation

$$
Z: B_{4 k} \longrightarrow U(Z(4 k ; x, 1))
$$

is dense, then, in particular evert "binary gate" in $U\left(H_{K} \otimes H_{L}\right)$ can be approximately implemented b_{y} a braid.
First difficulty:
$H_{K} \otimes H_{K}$ probably not an invariet subspone of $B_{4 K}$ under quatum representation $Z: B_{4 k} \longrightarrow U(Z(4 k ; x, 1))$.
Even worse?
May not be Any braid b b B H_{k} that preserves $H_{k} \otimes H_{k}$ and acts nontrivially.

Fortunately: while of practical/engineering importance, in principle, these issues can be overcome by bering careful with Solovay-Kitape theorems.
So, we will assume there is a Finite subset $E \subseteq B_{4 k}$ that gevertes a dace subgroup of $U\left(H_{k} \otimes H_{k}\right)$

Evaluatios Z on Draids built from A^{\prime} 's actirg on Duk and restricting to $H_{k} \otimes \cdots \otimes H_{k} \leq z\left(n k ; X_{1} 1\right)$ yields quatum circuit.

This shows we can simulate arbitrony quartum circuits of X particles in the TQFT Z.
Examples?
Toncs -Kquffman TQFTs (proved by Freedmon - LorsenWany)

How do topological inveriats of knots/links/3-maifolds derived from Z relate to this model of computation?

