Meeting 13.2 TQC and 3-manifold invariants
I. "Accept probability of circuit" = "Normalized quantum invariant"
II. Approximating quantum invariants w/ quatum computers

IPAM Summer School (UCLA) on Mathematics of Topological Pluses

$$
8 / 29-9 / 3
$$

http://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-mathematics-of-topological-phases-of-matter/
Deadline: $\quad 5 / 29$

Lightning review of lost fime
Given:

- extonded unitary $(\alpha+1)$-dim TQF T Z
- a "selt-dual color" X (secretly, a selt-dual object in unitart modular tesor category determind by z)
- two plonar matchings $T_{1} S$ of $2 k$ poits
such that:
- quatum represectation

$$
Z: B_{4 k} \rightarrow U(Z(4 k ; x, 1))
$$

his dense image
$-|T\rangle,|s\rangle$ lineary independey in $z(2 t ; x, 1)$
then:
can "lift" quantum circuit C (over fannie universal gate sat) actions on n quits to a braid diagram $b_{C} \in B_{2 n k}$ such that b_{c} acts on subspre

$$
\underbrace{H_{k} \otimes H_{k} \otimes \cdots \otimes H_{k}}_{n} \leqslant z(2 n k ; x, 1) \text {, }
$$

where $H_{k}=\operatorname{span}\{|T\rangle,|S\rangle\}$, in the some way C acts on $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}$. Moreover, the isomorphism $\mathbb{T}^{2} \cong H_{k}$ identifies

$$
|0\rangle=\frac{|T\rangle}{\sqrt{\langle T \mid T\rangle}}
$$ we use

The encoding $C \mapsto b_{C}$ is linear time.
We might call this topological quatum computing b / c circuits con be encoded inside a TQFT.

However, there's an even Latter reason to call it $T Q C$: if we are using C to answer a Yes/ No question, thin the probability of a Yes outcome is closely related to X-colored link invariant of B_{C} "closed up" with copies of T.

In particular, we call $+T Q C$ bk of the answer we na gie to question asked at and of previous nesting:

How do topological invariats of knots / links / 3 -manifolds derived from i relate to this model of computation?
I. "Accept probability of circuit" = "Normalized quantum invariant" Notice we haven actually used the identity

$$
|0\rangle=\frac{|T\rangle}{\sqrt{\langle T \mid T\rangle}}
$$

Here's why it matters:

$$
\begin{aligned}
& \langle 00 \cdots 0| C|00 \cdots 0\rangle=\frac{\langle T T \cdots T| b_{c}|T T \cdots T\rangle}{(\langle T \mid T\rangle)^{n}} \\
& \begin{array}{l}
\left\langle 0^{n}\right| c\left|0^{n}\right\rangle^{2} \text { is probolily}+1 \\
\text { Coutputs } \left.\left.10^{n}\right\rangle^{n} \text { chon input } 10^{n}\right\rangle
\end{array}
\end{aligned}
$$

and numerator and denominator of RHS both have topological interpretation, thanks to TQFT axioms.
$\langle T T \cdots T| b_{C}|T T \cdots T\rangle=Z\left(\hat{b}_{c}\right)$ where \hat{B}_{c} is X-colored $\underset{\text { vibbon }}{v}$ link diagram as follows:

$$
\begin{aligned}
& \epsilon^{\epsilon B_{2 k}} \quad Z\left(K_{1} \cup K_{2}\right)=Z\left(K_{1}\right) \cdot Z\left(K_{\lambda}\right) \\
& \left.(\langle T \mid T\rangle)^{n}=(\langle T|| | T\rangle\right)^{n}=Z\left(O_{x}^{k}\right)^{n}=Z\left(O_{x}\right)^{n k}
\end{aligned}
$$

where O_{x} is x-colored Unknot and
O_{x}^{k} is x-colored vintink w/ k-components.

Thus,

$$
\langle 00 \cdots 0 \mid C 100 \cdots 0\rangle=\frac{z\left(\hat{b}_{c}\right)}{z\left(O_{x}\right)^{n k}}
$$

Example: Jonos-Kauffiman TQFT w/ $C=U_{q} s l_{2}$-nod, $X=V$ the defing representation of $U_{5} s l_{2}$, and $q=e^{2 \pi i / k}$, then, $z\left(\vec{b}_{c}\right)$ is value of Jones polynomial of \hat{b}_{c} at $q 1$ ad

$$
\begin{array}{r}
z\left(O_{v}\right)=q+q^{-1} \\
e^{2 \pi i / 100}+e^{-2 \pi i / 100}=1-\varepsilon
\end{array}
$$

Reminder: $B Q P(\nexists 1 / 3)$
21: gate st
Decision problem $F:\{0,1\}^{*} \rightarrow\{0,1\}=\left\{N_{0}, y_{e}\right\}$ is in $B Q P$ if:
exists a classical poly time algorithm that converts but string $x \in\{011\}^{n}$ to a Z-circuit C_{x} such that

$$
\left\langle f(x), x, 0^{m-1}\right| C_{x}\left|x, 0^{m}\right\rangle \geq 2 / 3
$$

Note: here lm letting C_{x} depend on x_{1} and not just $\quad|x|=n$.

Variation: $B Q P(\nexists 1 / 3)$
21: gate st
Decision problem $F:\{0,1\}^{*} \rightarrow\{0,1\}=\left\{N_{0}, y_{e}\right\}$ is in $B Q P$ iF:
exists a classical poly time algorithm that converts but string $x \in\{011\}^{n}$ to a \mathscr{Z}-circuit C_{x} such that

$$
\left\langle\overline{F(x)}, O^{n}, O^{m-1}\right| C_{x}\left|0^{n}, O^{m}\right\rangle \geq 2 / 3
$$

So: We might as well allow x to prepare x From 00… We negate $T(x)$ for contrived reran.

A reference:
Proposition 2.3. $D \in B Q P$ if and only if there is a quantum circuit $C=C(x)$ with poly $(|x|)$ unitary gates acting on $n=\operatorname{poly}(|x|)$ quits, such that C itself can be generated in deterministic polynomial time FP, and such that the probability

$$
\begin{equation*}
\left.p(x)=\left|\left\langle 0^{n}\right| C\right| 0^{n}\right\rangle\left.\right|^{2} \tag{2.1}
\end{equation*}
$$

is at least $2 / 3$ if $D(x)=y$ yes and at most $1 / 3$ if $D(x)$ is no.
[Kuperbers, "How hand is it to approximate the Jones polynomial?"]

Theorem (Topological quatum computing)
Suppose z and X satisfy conditions above. Tho the decision problem

$$
F^{\prime}:\{0,1\}^{*} \rightarrow\{0,1\}=\left\{N_{0}, y_{e s}\right\}
$$

is in $B Q P$ if and only if there exists a polynomial time (classical) algorithm that takes $y \in\{0,1\}^{*}$ to 9
braid diagram by such that

$$
\begin{aligned}
& {\left[\frac{z\left(\hat{b}_{y}\right)}{z\left(O_{x}\right)^{n k}}\right]^{\alpha} \geq \frac{2}{3} \quad \text { if } \quad f(y)=\text { yes }} \\
& \text { and }\left[\frac{z\left(\hat{b}_{y}\right)}{z\left(O_{x}\right)^{n k}}\right]^{\alpha} \leq \frac{1}{3} \quad \text { if } \quad F(y)=N_{0} .
\end{aligned}
$$

Remarks

1. Conditions on X cam be relaxed (erg not self dual, use multiple colors to build a quit, etc...). Unclear what precise level of generdity ought to be.
2. 1 don't know examples of $Z+X$ such that

$$
z: B_{k} \rightarrow U(z(k ; x, 1))
$$

has infinite image for all $k \gg 0 B U T$ is NEVER dense

No bueno, b/c thse are two differect Hilbent sprus

Instron, use "color prostrians subgroup" $B_{3,3}$ of B_{6}

