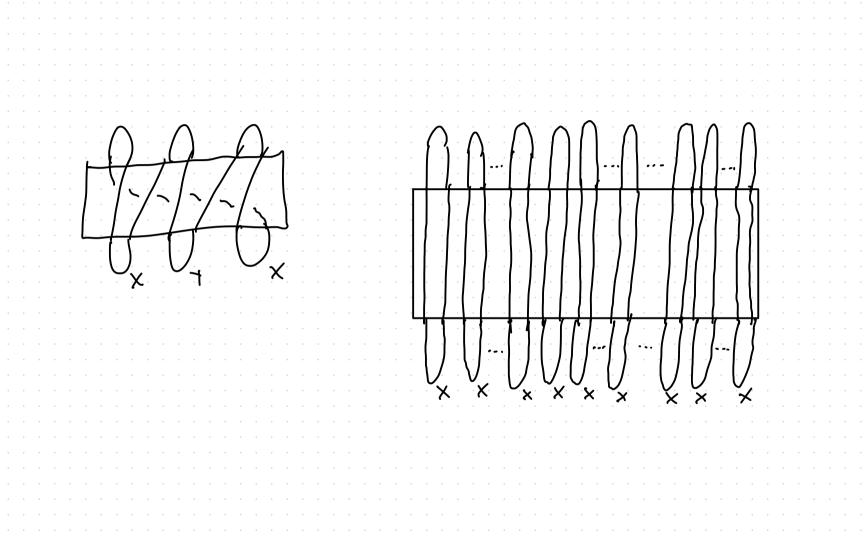
Meeting 13.2 TQC and 3-manifold invariants	· · · · ·
I. "Accept probability of circuit" = "Normalized quantum inva	via t''
II. Approximating quantum invariants w/ qualum computers	
	· · · ·
· · · · · · · · · · · · · · · · · · ·	
	· · · ·
IPAM Summer School (UCLA) on	· · · ·
Mathematics of Topological Phases	
8/29 - 9/3	· · · ·
http://www.ipam.ucla.edu/programs/summer- schools/graduate-summer-school-mathematics-of-	
topological-phases-of-matter/	
Deadline: 5/29	

Lightning review of bost time
Given - extended unitary (2+1)-dim TQFT Z
- a "self-dual color" X (secretly, a self-dual doject
in unitary modular tensor category determined by 2) - two planar matchings TiS of 2k points
such $+4+$:
- quatum representation
$Z: B_{4k} \rightarrow U(Z(4k; X_1))$ has derse image
- IT>, IS> linearly independent in 2 (2t; X, I)

then: Can "lift" quatum circuit C (over founde universal gate set) acting on n gubits to a braid diagram be E Bank such that be acts on subspace $H_k \otimes H_k \otimes \cdots \otimes H_k \leq 2 (\lambda_n k; X_1),$ where $H_{k} = spon\{T, IS\}$, in the same way Moreover, For the isomorphism In Hk identifies Concretenes, We Use $|0\rangle = \frac{1}{\sqrt{\tau}}$ $\sqrt{\langle T | T \rangle} / T = U U U$


Ьĸ $\times \times$ x X X XXXXX × $\bigcup (\mathbb{C}^{2} \otimes \mathbb{C}^{2})$ $g_{1}h_{1}h_{\epsilon} \in \mathcal{H}_{4}($ $b_{3}, b_{5}, b_{k} \in B_{g}$

The encoding CH? bc is linear time.
We might call this topological quatum computing L/c circuits can be encoded inside a TQFT
However, there's an even better reason to call it TQC: if we are using C to answer a Yes/No question, then the probability of a Yes outcome is closely
related to X-colored link invariant of bc "closed up" with copies of T.

la part: to questi	cular, we on asked a	call ;+ TQC t ad of f	E b/c F t	he answer w	e how give
1-10~	20	topo	log:cal	inver:	乄
of	Knots	/ links	13-4	nai Fol	S
deriv	ied	From	en S	late to	
this	mod	e) é	fcou	putat:	っ 。

I. "Accept pro	bability of ci	"cuit" =	Norma	lized	quastum	invaria
Notice ~e 1					· · · · · · ·	· · · · · · · ·
· · · · · · · · · · · · · · · ·	/o> =		· · · · · · ·	· · · · · · ·	· · · · · · ·	· · · · · · · ·
· · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,			· · · · · · ·	· · · · · · ·	· · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·		.			
Here's why	it matters.					
<00.01C/0	$0 - 0 = \langle - 0 \rangle$	[T T]	L _C /T	TT		· · · · · · · · · · · · · · · · · · ·
<pre></pre>	input 10h)	(< T	17>)		· · · · · · · ·	· · · · · · · · ·
and numerator	and denomin	tor of	RHS	6071	, have	
topological in						
		· · · · · · · ·	· · · · · · ·		· · · · · ·	· · · · · · · ·

<TT ... T/6c/TT --- T> = 2(6c) where 6c X-colored link diagram as follows: vibbon $\langle T | \otimes \langle T | \otimes \cdots \otimes \langle T |$ $|T\rangle \otimes |T\rangle \otimes \cdots \otimes |T\rangle$

2(K, UK2) = 2(K).2(K) EBZK $(\langle T|T \rangle)^{n} = (\langle T|IJ|T \rangle)^{n} = 2(O^{k})^{n} = 2(O_{x})^{nk}$ where Ox is X-colored Unknot and Ox is X-colored Unlink w/ K-components.

Thus, $\langle 00-0|C|00-0\rangle = 2(\hat{b}_{c})$ $Z(O_{v})^{nk}$ Example: Jones-Kauttman TQFT 4/ C= Ugsly-used, X=V the defining correspondation of Ugslz, and q = elni/k, then 2(6c) is value of Jones polynomial of 6c at q1 ad $2(0,) = q + q^{-1}$ $e^{2\pi i/100} + e^{-2\pi i/100} = (-\epsilon)$

Reminder: BQP (29, 1/3) 21: gate st
Decision problem $F: \{0,1\}^* \rightarrow \{0,1\} = \{N_0, Y_{es}\}$ is in BRP iF:
exists a classical poly time algorithm that converts bit string $x \in \{011\}^n$ to a $Z = circuit$ C_x such that $\langle F(x), x, 0^{m-1} C_x x, 0^m \rangle \ge \frac{2}{3}$.
Note: here I'm letting C_X depend on X , and not just $ x = n$.

$\frac{Variation}{21: gate} : BQP(21, \frac{1}{3})$
Decision problem $F: \{0,1\}^* \rightarrow \{0,1\} = \{N_0, Y_{es}\}$ is in BRP iF:
exists a classical poly time algorithm that converts bit string $x \in \{011\}^n$ to a $Z = circuit$ C_x such that $\langle \overline{F(x)}, 0^n, 0^{m-1} C_x 0^n, 0^m \rangle \ge \frac{2}{3}$.
So: We might as well allow x to prepare x From 00 D. We negate FTX) For contrived resson.

F(x)				
£(×)				
T (Ma Ma				
$\nabla c \sim 1 + 1$				
+(x)				
f(x) x, x2 x > 000				
		X=OI		
∥	17	X-UI	l	
×1 × × × 000				
I we are: 1/as				
000				

A reference:

Proposition 2.3. $D \in BQP$ if and only if there is a quantum circuit C = C(x) with poly(|x|) unitary gates acting on n = poly(|x|) qubits, such that C itself can be generated in deterministic polynomial time FP, and such that the probability

$$p(x) = |\langle 0^n | C | 0^n \rangle|^2 \tag{2.1}$$

is at least 2/3 if D(x) = yes and at most 1/3 if D(x) is no.

[Kuperberg, "How had is it to approximate the Jours polynomial?"]

Theorem (Topological quature computing) Suppose 2 and X satisty conditions above. Then the decision problem F: {0,1}* -> {0,1} = {No, Yes} is in BQP if and only if there exists a polynomial time (classical) algorithm that takes y E { 011} to a braid diagram by such that $\left[\frac{\frac{2}{2}\left(\tilde{b}_{\gamma}\right)}{\frac{2}{2}\left(O_{\chi}\right)^{n_{k}}}\right]^{2} \frac{2}{3} ; f = F(\gamma) = Yes$ and $\left[\frac{2(\tilde{b}_{\gamma})}{2(O_{\chi})^{nk}}\right]^{2} = \frac{1}{3}$ if $F(\gamma) = N_{0}$.

<u>Remarks</u>
l. Conditions on X can be relaxed (e.g. not self
dual, use multiple colors to build a gubit, etc).
Unclear what precise level of generality ought to be.
2. I don't know examples of Z + X such that
$Z: B_k \rightarrow U(Z(k; X_I))$
has infinite image for all KND BUT
is NEVER dese
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

No lavero, 5/c these are two different Hilbert Spaces Instrul, use "color preserving subgroup" B3,3 of B6