Meeting 14.1: Computational co	mplexity of	TQFT invarian	ts
I. Approximating quantum	invariants	w/ quatur	computers
I. Bad news.			
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·
	E	S	· · · · · · · · · · · · · · · · · · ·
INSTRUCTOR + COURS			· ·
EVALUATION SYSTEM			· · · · · · · · · · · · · · · · · · ·
$\int Eq Se = 00$	evar.		
	· · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·

I. Approximating quantum invariants w/ quatum computers
S_{\circ} F_{ac} :
- built model(s) of quantum computation using
2+11- dimensional once-extended Unitary TQFTS
- normalited quantum invariants of knots/links are
sometimes "important amplitudes" of quatum circuits
$\langle 00 - 0 C 00 - 0\rangle = 2(\tilde{b}_{c})$ (oristructed From Circuit
$\overline{\zeta(O_{x})^{nk}}$
Note: there are tlavors for closed 3-man: folds (instead of
(inks in >) Using quitur reps of MLG (closed surface)

Natural	question.			
ſs	there	9 <i>"</i> C	onverse	e`?Can
quart	Um Co	mpute	rs do	Something
For	topol	ogy?		
	· · · · · · · · · · · · ·			

Kind of. Suppose we have:	
- once extend unitary TQFT 2 and	color X (not self-dual)
Ten X-colored ribbon link dingram	
Convert L to grantum circuit	×
CL such that	
$\langle 00-0 C_{L}/00-0\rangle = \frac{2(L)}{C_{L}}$	A AV TX
$\zeta \left(\bigcirc_X \right)^{\circ(L)}$	
where $B(L)$ is the bridge number	Llla 420 from Knot Atlas

More precisely: to "have 2 and X" means ve have: - an identification of Hilbert spaces $\frac{2}{2}(X_{1}^{\delta}X^{\epsilon}) = \bigoplus_{N \in \Gamma} \frac{2}{2}\left(\underbrace{\begin{array}{c} & & \\ & \chi \\ & & \chi \end{array}\right) \xrightarrow{\simeq} \int_{\Gamma} \frac{N(x^{\epsilon}, x^{\epsilon})}{\sqrt{2}}$ qudits w/ $\mathcal{J} = \mathcal{N} \left(\times^{\mathcal{S}} (X^{\mathcal{E}}) \right)$ where $d_1 \varepsilon = \phi$ or χ such that $2(x, x^*; 1) \geq \left(\begin{array}{c} x \\ y \end{array} \right) + \left(\begin{array}{c} x \\ y \end{array} \right)$ |0) € ([N(x, x*) Normalization Factor = 2 (Or)

- descriptions (e.g. matrices / algebraic entries) of Fraidine gates $\bigoplus_{y} Z\left(\underbrace{+ x^{\xi} + x^{\xi}}_{y} \right) \xrightarrow{\cong} (N(x^{\xi}, x^{\xi}))$ Graiding $\bigoplus Z \left(\underbrace{x_{\xi}}_{X_{\xi}} \underbrace{x_{\xi}}_{X_{\xi}} \right) \xrightarrow{\cong} \left(\bigwedge (x^{\xi}, x^{\xi}) \right) \xrightarrow{g_{g_{\xi}}}$

 $\bigoplus_{Y} Z\left(\underbrace{+ x^{\epsilon_1} x^{\epsilon_2}}_{X^{\epsilon_1}} \right) Z \left(\underbrace{+ x^{\epsilon_2} x^{\epsilon_2}}_{X^{\epsilon_1}} \right) Z \left(\underbrace{- x^{\epsilon_2} x^{\epsilon_2} x^{\epsilon_2}}_{X^{\epsilon_1}} \right) Z \left(\underbrace{- x^{\epsilon_2} x^{\epsilon_2} x^{\epsilon_2}}_{X^{\epsilon_1}} \right) Z \left(\underbrace{- x^{\epsilon_2} x^{\epsilon_2} x^{\epsilon_2} x^{\epsilon_2}}_{X^{\epsilon_1}} \right) Z \left(\underbrace{- x^{\epsilon_2} x^{\epsilon_2} x^{\epsilon_2} x^{\epsilon_2} x^{\epsilon_2} x^{\epsilon_2}}_{X^{\epsilon_1}} \right) Z \left(\underbrace{- x^{\epsilon_2} x$ binny braiding gate

Note: the above local data should be considered as (part of)
a combinatorial/finite algebraic definition of TRFT Z.
It needs to satisfy various compatibility conditions
IF we wated to be more precise, should use an
skeletalization of a
Unitary modular tensor
Category.

Converting L to CL: 1. Put L in "standard bridge position" Arrows way

3. Eac	-1 to check using	TQFT exians	
· ·	<000/C _L /000>	$= \frac{2(L)}{2(Q_{x})^{2}}$	ν (L)
· · · · · · · · · ·	where $b(L)$ is the	bridge number	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	of diagram L.		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · ·	
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Now what?
We can approximate the protability
10001CL/000>12
in usual way via repeated trials. In particular, given
No can Find N-bit binary approximation in O (log N).
$Suppose \left[P - \left \left(00 - 0 \right) C_{L} \right 00 - 0 \right] \right] \left \left(2 \varepsilon \right) \right $
$T_{W_{-}} \left(P - \left(\frac{2(L)}{Z(Q_{X})^{5}(L)} \right)^{2} \right)^{2} \leq \varepsilon$
$\Rightarrow \left P \cdot \left \frac{2}{x} \left(\frac{\pi}{2} \right)^{2b(L)} - \left \frac{2}{(L)} \right ^{2} \right L \in \left(\frac{\pi}{2} \right) \right ^{2b(L)}$

Now chat? What to compute an invoriant of L. 1100 $\langle 00 - 0|C_{L}|00 - 0\rangle = \frac{2(L)}{2(O_{X})^{b(L)}} u^{b(t)} u^{b(t)}$ $Z(O_{X})^{b(L)} L^{b(L)}$ $L = L^{b(t)} u^{b(t)}$ $L = L^{b(t)} u^{b(t)$ Sol LHS is NOT invoiat. (f(r))

Summerizing : Extracting on invariant of L/ manualy, [Z(L)]~ From the identity $\langle 00-0|C_{L}|00-0\rangle = 2(L)$ $\frac{2}{2} \left(\bigcirc \right)^{b(L)}$ his error that scales exponentially badly w) b(L). Error depuds on diggram

$\left P\cdot\left \frac{2}{x}\left(\frac{D}{x}\right)^{2b(L)}\right - \left \frac{2}{2}(L)\right ^{2}\right \leq \varepsilon \cdot \left \frac{2}{x}\left(\frac{D}{x}\right)\right ^{2b(L)}$
$ f \frac{1}{x} (O) \frac{1}{x} $, we're happy.
But this NEVER happens unless X is on abelian anyon in which case 7(1).
trivial. Moral: iF L is Wide, it takes a to of
work to avercance the error.

Con we rescue any thing? 1. IF we restricted L to 6(L) 4/00, we can compute 2(L) in linear time on a classical computer! No dice! L. (an ve massage L to make b(L) small? For every N70, exists lint L such that b(D) > N for all diagrams D of L.

3. Can une missage CL t- get 9 thinner circuit C'L that is use folo Freedman, Cui-Freedman - Way "Complexity Classes as Mathematical Axions

2. Bond News

Z any TQFT w/ X=X* al dence **Theorem 1.2.** Let V(L,t) be the Jones polynomial of a link 1 air L described by a link diagram, and let t be a principal, non-9 62 lattice root of unity. Let 0 < a < b be two positive real numbers, and assume as a promise that either |V(L,t)| < a or |V(L,t)| > b. Then it is #P-hard, in the sense of Cook-Turing reduction, to decide which inequality holds. Moreover, it is still #P-hard when L is a knot. (Kupperbry, "How had is it to approximate...? 2(L) 69 or 12(L) / 26 NP-had (even better, #P-had) to distingersh.

Proot Post BQP = "Linear circuits" Aaro-con PP