-		•	N	or)		C (Ur.	√ <i>€</i>	•5	•	a	1) V	•	1	e	e	י קי	7 Q	, 0)	• (d;	Cr (, , , ,	71	N	ς. Σ	•	•	Q	y (4	٦Ļ	ń.,	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		- - - - - - - - -	
	N		•																				1				•													÷¢e	>0	5)	· · ·		
	•	•			•	•			•				•											•			• •														•					
			• •																								• •																•		. •	
			• •				•						•	•	•	•	•									•	• •		•	٠						•										
			• •																								• •										•						•	• •		
			• •				•				•		•	•	•	•				•						•	• •					•				•	•					•	• •			
			• •	•			•						•	•	•	•				•						•	• •		•	•	•					•		•				•				
			• •																																											

I. Normal curves and theegood diagrams Last time: Corollary Every closed orsutable 3-manitold can be presented as a Heegenerd diagram, which consists of a surface S of some genus 9, together u/ two complete disk systems on S In fact, S can be triagulated, and each curve in the disk systems (ay be made a normal curve.

More examples: SXS $= S^2 \times S' # S^2 \times S'$ lgreen curve bounds disk on both sides Corrigonds to a 2-sphere embedded in M

Connect sums of manifolds: Let M, N be two orientable 3-folds (connected). Pick MEM, NEN. Let $M' = M - \overline{R_{\varepsilon}(m)}, N' = N - \overline{R_{\varepsilon}(n)}$ M'and N' cade his a new S2 bandary comparet. B/c ormadely, we can identify two copies of S2 in 9 M (M) (M) Unique way

Let M#N lae $M' \sqcup N'$ JM' - JN' Conversely: a 3-manifold L is a connect sun precisely when there exists an embedded d-sphere S²CL s.t. neither component at L-S2 is a 3-ball.

More examples: every monitold with a genus one splitting is called a lens space: L(3,2)- (a build L(m, m) for any min. 5 00 - Classified up to homeomorphicm Non-homeomorphic les spaces can be homotopy equivalent.

Let's compute something. $\left(A \right) = L(3, \lambda)$ = $A UB A nB = S' YS', A = B = S' + B^2$ Mayor - Viotoris sequence $H_1(A \cdot B) \rightarrow H_1(A) \oplus H_1(B) \rightarrow H_1(L) \rightarrow 0$ $\mathbb{Z} \otimes \mathbb{Z} \xrightarrow{(3)} \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z}/3$ <-> @

Normal Curves Let Y be a triangulated surface. A curve & is normal (wit Y) if every segment in J-T' has its endpoints on distinct edges of 71, and Ruling out curves 6000' that backtrack

Normal curves Up to isotopy in T-T, a normal curve is detormined by a vector of edge intersection courts: Vy: Edges (T) -> Z20 $V_{\chi}(E) = \# \gamma n E$ Consider

Normal curves	
The set of (isotopy classes re)	To of) normal curves
is a polyhedral cone in 2	Edges
Claim: a vector v G Dedges Zo	determines a normal curve
it and only it, for each	fringle IET, the
there corresponding entries of	V satisty tringle
there corresponding entries of inequalities	V satisty triagle
inequalities	V satisty tringle
inequalities en lez	V catisty tringle
inequalities en ez	V catisty triagle
inequalities en lez	V Latisty trigle

-		-	N Kr	, 1	مہ 2	,) ,) ~~ (ະ ຫ ວ	יי ן)e ;_	s ks	· · ·	a	ہ ہ ک) {;	٢	41 k	<i>e</i> e	و ا	79 ~e.	9⁄ 2/ 2 4		1	0 1	1; c	و مر حر	71 C	nj	Ĵ	c);c				 ? . .								· · · · · · · · · · · · · · · · · · ·		
	N												• •										•												 				Fc I	,lo	5))	• •	• •	•
		•				• •																	•		• •																				
						• •							• •				•				•		•	•	• •				•	• •		•		•				•		•	•	•	•	•	
																																		-									•		
																						•		•	• •					• •				•											
						• •					•		• •									•		•	• •									-				٠			•			•	
•	•			•		• •	•		•	•								•	•		•	•	•		• •		 •			• •	•		•	•	 •	•	•	•	•	•	•	•			
																									• •									•											

Warning	
Triangulation >> Heegaard diagram easy, but	
Converse is usually expensive.	· · · · · · · · · · · · ·
Problem: a normal curve vator VGZ20	· · · · · · · · · · · · · ·
Con encode a curve that is exponentially long	· · · · · · · · · · · · ·
in the size of V.	· · · · · · · · · · · · ·
Take-awayi Hoeysad	
diagram is	· · · · · · · · · · · · · ·
"highly compressed"	· · · · · · · · · · · · ·
AA	· · · · · · · · · · · · · ·

De ciding hompomorphism From Heegaard diagrams <u>Reidemeister - Singer</u> Two Heeggand diagrams represent homeour orphic manifolds if and obility if they can be identified by a sequence of elementary operations. I. Isotopy). Handle slide

3. Stabilization destatilize

II. Knots and links: stick presentations and diagrams A knot is a continuos injection (eurbedding) $K: S' \rightarrow \mathbb{R}^3$ (or S^3). Often, contlate a Knot K with its image. When are two knots equivalent? One wrong answer: isotopy. Recall, two maps KIL: SI > R's are isotopic if there is a continual Function H: S'x EOI) -> IR > Such that H/SIX { 03 = K and H/S'X { 13 = L,

and H(-,t) for any fixed t is an embedding. Why is thic wrong? Can use 17 to shrint the interesting, Isotopins can unite Knots trivial! Dat

One correct definition = quibient isotopy	· · ·	· · ·
Kand Lare quitient isotopic if there exists	· · ·	· · ·
$H: \mathbb{R}^3 \times [O_1] \longrightarrow \mathbb{R}^3$	· · ·	· · ·
such that	· · ·	· · ·
i) H(-1t) is a homeomorphism of R3	· · · ·	· · · ·
ii) $H(-,0) = 10_{R3}$	· · ·	· · · ·
ini) $H(K(x), I) = L(x)$ For all $x \in S^{2}$.	· · · ·	· · ·
		· · ·
· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·
	· · · ·	

Another correct detriction: Homeomorphism! Say Kad Love homeomorphic et there exists $L: \mathbb{R}^3 \xrightarrow{\simeq} \mathbb{R}^3$ such that h(K(x)) = L(x)) for all $x \in S'$. Two definitions ALMOST identical: every orientation precerving homeo of M^{2} (or S^{3}) is isotopic to the identity. (left-handed US (ight-handed tretails) Ex: Gus Co