Meeting 2.2: More on 3-manifold encodings
I. Normal curves and Heegaidd diagrams
II. Knots ad links: stick presentations and diagrams

Next week: 1. complexty theory (not structure of 3-matolds) 2. Example problems for 3 -manifolds and their couplexitos.
I. Normal corves and Heegard diagrams

Last time:
Corollary Every closed orintable 3-manitold can be presuted as a Heegaad diagram, which consists of a surtixe $S$ of some genus 9, together w/ two complete disk system on $S$
In fact, $S$ can be friagulatad, and each curve in the disk systems can be made a normal curve.

More examples:


Connect sums of manifolds:
Let $M_{1} N$ be two arietoble 3-folds (connected).
Pick $m \in M, n \in N$. Let

$$
M^{\prime}=M-\overline{B_{\varepsilon}(m)}, \quad N^{\prime}=N-\overline{B_{\varepsilon}(n)}
$$

$M^{\prime}$ and $N^{\prime}$ each has a new $S^{2}$ boundary comport, $\mathrm{B} / \mathrm{c}$ ocmiltble, we can identity two copies of $S^{2}$ in a unique way
$M$


Let $M \# N$ be

$$
M^{\prime} \bigsqcup_{\partial M^{\prime} \cong \partial N^{\prime}} N^{\prime}
$$

Conversely: a 3 -manifold $L$ is a connect sum precisely when there exists an en bedded $\alpha$-sphere $S^{2} C L$ sit. neither component ot
$L-S^{2}$ is a 3 -ball.

More examples: every martold with a genus one splitting is called a lens space:


$$
=L(3,2)
$$

- Con build L(min) for
 any min.
- Classified up to homeomoplusem by
- Non- homeomorplic las spaces can be homotory equivalat.

Let's compute something:


$$
L=A \backsim B \quad A \cap B=S^{\prime} \times S^{\prime}, A \subseteq B^{2}=S^{1} \times \Delta^{2}
$$

Moror-V:otoris sequence

$$
\begin{aligned}
& H_{1}(A \cap B) \rightarrow H_{1}(A) \oplus H_{1}(B) \rightarrow H_{11}(L) \rightarrow 0 \\
& \mathbb{Z} \otimes \mathbb{Z} \xrightarrow{\left(\begin{array}{ll}
0 & 1 \\
3 & \alpha
\end{array}\right)} \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z} / 3 \\
& \langle\Rightarrow\rangle\langle\Delta\rangle \quad\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Normal curves
Lat $\tau$ be a triangulated surface. $A$ curve $\gamma$ is normal (wry $\tau$ ) if every segment in $\gamma-T^{\prime}$ has its endpoint on distinct edges of $\Psi_{1}$, and


Normal curves
Up to isotopy in $\tau-$ Yo a moral curve is determined $^{0}$ a by a vector of edge intersection counts:

$$
\begin{array}{r}
v_{\gamma}: E \operatorname{dges}(T) \rightarrow \mathbb{Z}_{20} \\
v_{\gamma}(E)=\# \gamma \cap E .
\end{array}
$$



Normal curves
The set of (isotopy classes rel Yo of) normal curves is a polyhedral cone in $\mathbb{Z}^{\text {Edges. }}$
Claim: a vector $v \in \mathbb{Z}_{20}^{\text {edges }}$ determines a normal curve if and only it, for each triangle $T \in T$, the there corresponding entries of $V$ satisfy triogle inequalities


Meeting 2.2: More on 3-manifold encoding
I. Normal curves and Heegaid diagrams
II. Knots ad links: stick presentations and diagrams
III. Bridge position, braid groups, and trap closures

Next week: 1. complexty theory (not structure of 3-matolds) 2. Example problems for 3 -manifolds and their couplexitos.

Warning
Triangulation $\rightarrow$ Heegard diagram easy, but Converse is usually expensive.
Problem: a normal curve vector $v \in \mathbb{Z}_{20}^{E d s e s}$ can encode a curve that is exponentially lang in the size of $V$.

Take-awepi Hecysad diagram is "highly compressed"


Deciding hompomorphism from Heegaard diagrimes
Reidemeister - Siuger Two Heegand diagroms cepreset howeomsorphic manifulds if and only if they can be identifiod by e sequerce of elementary operations

1. Isotopy

2. Hande slide

3. Stabilization

II. Knots and links: stick presentations and diagrams

4 kent is a continues injection (embedding)

$$
K: S^{1} \rightarrow \mathbb{R}^{3} \text { (or } S^{3} \text { ). }
$$

often, conflate a $\mathrm{Kno}^{+} \mathrm{K}$ with its image. When are two knots equivalent?
One wrong answer: isotopy.
Recall, two maps $K_{1} L: S^{\prime} \rightarrow \mathbb{R}^{3}$ are isotopic if those is a contrivaul function

$$
H: S^{\prime} \times[0,1] \rightarrow \mathbb{R}^{3}
$$

Such that $H \mid S^{\prime} \times\{0\}=K$ and $H / S^{\prime} \times\{1\}=2$,
and $H(-, t)$ for any fixed $t$ is an embedding.
Why is this worn?

Can use
$H$ to shrink the interesting port Isotopes can minke knots trivial!

One correct definition: ambient isotopy
$K$ and $L$ ore ancient isotopic if there exists

$$
H: \mathbb{R}^{3} \times[0,1] \rightarrow \mathbb{R}^{3}
$$

such that
i) $H(-, t)$ is a hameomoplisen of $\mathbb{R}^{3}$
ii) $H(-10)=1 \mathbb{R}^{3}$
iii) $H(K(x), 1)=L(x)$ For all $x \in S$ ?

Another correct detrition: Homeomorphism!!
Say $K$ ad $L$ ore homeomophic if there exists

$$
h: \mathbb{R}^{3} \cong \mathbb{R}^{3}
$$

such that $h(K(x))=L(x))$ for all $x \in S^{\prime}$.
Two definiters ALMOST identical:
every orientation preserving lompo of $\int R^{3}$ (or $S^{3}$ ) is isotopic to the identity.

Ex:


