
Me	et:	<u>19</u>	3	•	- -			••••		•	•	•	· ·	•		•	••••	•	•	•	••••	•	•	•	••••			••••	•	•		• •	•	•		• •	•	•	• •	• •
I.	k	,.t	`S	2	ູ່		1	rs	•	ŝ	:+\	۲ <u>۲</u>	k		pr	<u>و</u> ح	Q I	$\frac{1}{2}$	จา	ìo	-2		a	nd		di	90	90	qL	י גר	•	• •		•		• •			• •	• •
I.	t) S ()	99	r R	p	لر ح	(;†	1°0)] [ł) C	2	J	•	q	ופ	٧þ	20		1	a	- d	•	+,	. .	P	. (، ک ٥	vr	e S	• •		•	•	• •	0	•	• •	• •
II.	D	e e	C.S	i o l		p	(0	Ц	C	5	Ş	1		20		n t	, . , .	5 .	0	P	0	ble	14	م	 / .	q	, , ,	•••	C	0	ý	p) {	01	b;	lit	y .	•		• •
	• • • •	o o	• •	•	• •						•		• •		•		• •		•		• •		•			•		• •	•			• •		•		• •	•			• •
••••	• •	• •	• •	•	• •	•	•	• •		•	•	•	••••	•	•	• •	• •	•	•	•	• •	•	•	•	· ·	•	•	• •	•	•	•	· ·	•	•	•	• •	•	•	• •	• •
				0	• •	•	0	• •		•	0		• •	•	0	• •	• •	•	0	0	• •	•	•	•	• •	0	•	• •	0	•	•	• •	•	•	•	• •	•	•	•	• •
	· ·	· ·	· ·	•	••••	•	•	• •		•	•	•	• •	•	•		• •	•	•	•	• •	•	•	•	· ·	•	•	· ·	•	•	•	• •	•	•	•	• •	•	•	• •	• •
	 	· ·	· ·	•	•••	•	•	• •		•	•	•	••••	•	•		• •	•	•	•	• •	•	•	•	· ·	•	•	· ·	•	•	•	••••	•	•	•	• •	•	•	• •	••••
			• •	0	• •			• •		•	0	•	0 0 0 0	•	0		o o		0	0	• •		•	0	• •	0		• •	0			• •		•	•	o o	0			o o
	• •	• •	••••	•	••••	•	•	• •		•	•	•	• •	•	•		• •	•	•	•	• •	•	•	•	· ·	•	•	· ·	•	•	•	• •	•	•	•	• •	•	•	• •	• •
	 	· ·	· ·	•	• •	•	•	• •		•	•	•	• •	•	•		• •	•	•	•	• •	•	•	•	· ·	•	•	••••	•	•	•	••••	•	•	•	• •	•	•	• •	· ·

Recall, a knot is a cts embedding. K: S' -> S ³ A knot is the if it comes from celliciting a embedding N(K): S'XD> -> S ³ Via N(K) S'X {0}. "Tome" = "Has a tubular meighborhood" A knot that is not town is called wild. Any knot K that "extends across a disting in unknod. That is if there exists an cubedding T: D ² -> S ³ such that T DD ² = T S' = K.	I knots and links: stick presentations and diagrams
K: SI -> S ³ A knot is time if it comes from costricting a embedding N(K): SIXD> -> S ³ Via N(K) SIX{0}. "Tome" = "Hos a tubular neighborhood" A knot that is not tome is called wild. Any knot K that "Extends across a distrinic an unknot. That is if there exists a embedding T: D> -> S ³ such	
N(K): SIXD >> S3 Via N(K) SIX {0}. "Tome" = "Has a tubular neighborhood" A knot that is not town is called wild. Any knot K that "extends across a distriction onlinet. That is if there exists a cubedding T: D => S3 such	$K: S' \rightarrow S^3$
Via N(K) S'x {0}. "Tame" = "Has a tubular meighborhood" A knot that is not town is called wild. Any knot K that "Extends across a distrinic an unknot. That is if there exists an embedding T: D ² → S ³ such	A knot is trane if it comes from cestricting a embedding
"Tame" = "Has a tubular neighborhood" A knot that is not town is called wild. Any knot K that "Extends across a Jish" is an unknot. That is if there exists an embedding $T: D^2 \rightarrow S^3$ such	
A knot that is not form is called wild. Any knot K that Extends across a distrinis an unknot. That is if there exists an embedding $T: D^2 \rightarrow S^3$ such	$Vig N(k) S' \times \{o\}.$
A knot that is not form is called wild. Any knot K that Extends across a distrinis an unknot. That is if there exists an embedding $T: D^2 \rightarrow S^3$ such	"Tame" = "Has a tubular meighborhood"
That is if there exists a cubedday T: Da > S3 such	· · · · · · · · · · · · · · · · · · ·
That is if there exists a cubedday T: Da > S3 such	Any knot K that Extends across a district an unknot.
-	

Tome knots are always isolopic to PL knots JESO: YPES! $[K(p), K(p+E)] \subseteq Image(N)$

Stick presentations and triagle moves A stick presentation of a kat is a sequence of points PoiPiin, PL=Po E Z³ CR³ CS³ so that For all 1, j = 0, ..., L-1, the line segments PiPiti and PiPiti have disjont interiors and P; = P;

A tringle two stick	move is an presentations:	elemetar.	isotopy	between
· ·	Piti	Qí		Qita Piti
		\longrightarrow		
		· · <td></td> <td></td>		
Pj		. .	C.	$b_{\zeta} = A_{\overline{2}}$

IF Q is any post in 23 such that the trivole Pi QPiti is disjont From all at the other sticks, then two stick presentations related by a triangle move represent intopic knots Theor Two stick presentations represent equivalent knots (ambient isotopic) it and only it they are celated by a sequence at tringle moves.

Diagrams and Reidemeinter moves A diagram of a knot is an enbedded planar graph with extra information at vertices to encode crossing information. This planar graph shald came tran a regular projection of a knot K in R3 oute a plane. - Require preimage of every point to have at most 2 pauls / - Wo're force of -Also don't allow crossing singularities to tonsverse (

Diagrams and Reidemeinter moves The Two knot diagrams represent equivalent knots iff they are related a sequence of Reidenneistin movers: Type I THE SAN MAN \mathcal{D}

Type I	$\sum_{n} \left(\sqrt{n} \right) \left(\sqrt{n} \right) = \frac{1}{2} \left(\sqrt{n} \right) \left(\sqrt$
Type II (brown celetion)	

I. Bridge pos	ition, braid grow	ips , and trace c	losvres
	0	pridge position	
		of xy-plane,	
Maxime OCCI	ur at same	height, and	all of the
minim n		· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Proposition Given any knot diagram, we can ensily Find a equivalent diagram in bridge position. Proof:

Artis braid group (s) By is the brand group on a strands, which is presented vig 6; 5; = 5; 5; iF [i-j]> $B_{n} = \{ \sigma_{1}, \sigma_{2}, \dots, \sigma_{n-1} \} = \sigma_{j} \sigma_{j+1} \sigma_{j} = \sigma_{j+1} \sigma_{j} \sigma_{j+1} \forall i \}$ We can interpret a string of only as a picture of a braid; the celefions ever that isotopic broads are considered equal elements of the group.

Ex Consider 0,02020201 in By Convention: "Right to left" = "Bottom to top" 03 Or 52 02 1 Z Of ا م (iteral equality in group corresponds to kotopy of braid diagons

Given my word in the generators of By
We can draw a braid dragram.
Furtherman, if n=21% is over, the following three
pieces of data give us a diagram of a knot in
Lridge position:
1. (ups (a planar matching of the dir strands)
J. Caps (J; Ho)
3. A word in generators of B2x.
· · · · · · · · · · · · · · · · · · ·

Warning: Previous Cecipic might yield 9 link Liggram instead of a Knot diagram. Alternative construction : Trace closure. Given braid word w C Bur do His?

Tue frace obsures of braids represent equivalent links when they are related by a sequence of two types of moves $\left| \begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right| \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} c q^{\beta} w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} w \rightarrow \chi w \rightarrow \chi w \chi^{-1} \\ \end{array} \right) \left(\begin{array}{c} (\sigma_{j} u g^{\alpha} w \rightarrow \chi w \rightarrow \chi \psi \right) \left(\begin{array}{c} (\sigma_{j} w \rightarrow \chi w \rightarrow \chi \psi \right) \right) \left(\begin{array}{c} (\sigma_{j} w \rightarrow \chi w \rightarrow \chi \psi \right) \right) \left(\begin{array}{c} (\sigma_{j} w \rightarrow \chi \psi \rightarrow \chi \psi \right) \right) \left(\begin{array}{c} (\sigma_{j} w \rightarrow \chi \psi \rightarrow \chi \psi \right) \right) \left(\begin{array}{c} (\sigma_{j} w \rightarrow \chi \psi \rightarrow \chi \psi \right) \right) \left(\begin{array}{c} (\sigma_{j} w \rightarrow \chi \psi \rightarrow \chi \psi \right) \right) \left(\begin{array}{c} (\sigma_{j} w \rightarrow \chi \psi \rightarrow \chi \psi \right) \right) \left(\begin{array}{c} (\sigma_{j} w \rightarrow \chi \psi \rightarrow \chi \psi \right) \right) \left(\begin{array}{c} (\sigma_{j} w \rightarrow \chi \psi \rightarrow \chi \psi \right$ 2. Stalization: