Meeting 3.d: A smattering of complexity

I. Decision problems, counting problems, and computability

II. The usual suspects: P. FP, NP, PSPACE, EXP, # , ER, R, RE

II. Reductions and Mardness

I. Decision problems, counting problems, and computability A decision problem is a function tes L: {0,13*= () {0,13k-> {0,13} K21 A counting problem is a function F: {0,13* -> {0,1} *= 1N, in binary Remark: the domain of a problem, namely {011}, is

typically an encoding of some interesting combinationialized mathematical object.

Before doing complexity, we need to understand computatility.

Turing Machines are one way to make algorithms precise.

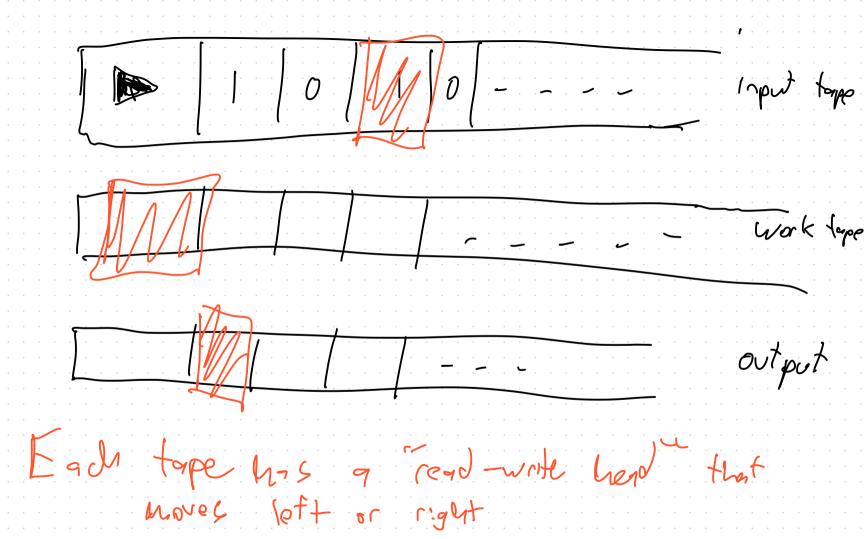
Turing Machines defin From Arora + Barak's Computitional Complexity

Formal definition. Formally, a TM M is described by a tuple (Γ, Q, δ) containing:

- A finite set Γ of the symbols that M's tapes can contain. We assume that Γ contains a designated "blank" symbol, denoted \square ; a designated "start" symbol, denoted \triangleright ; and the numbers 0 and 1. We call Γ the alphabet of M
- the numbers 0 and 1. We call Γ the alphabet of M.

 A finite set Q of possible states M's register can be in. We assume that Q contains a designated start state, denoted q_{start} , and a designated halting state, denoted q_{halt} .
- A function $\delta: Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times \{L, S, R\}^k$, where $k \ge 2$, describing the rules M use in performing each step. This function is called the *transition function* of M (see Figure 1.2.)

remory own


('Read-Write

head flut

moves Left +6

	IF			THEN			
Input symbo read	Work/ output tape symbol read	Current state	Move input head	New work/ output tape symbol	Move work/ output tape	New	
	40.705	A Tria	Santy i o	G or	1	1	
a	b	q	Right	b'	Left	q'	
1	1	in total and	i i	ul dist	To keep to		

igure 1.2. The transition function of a two-tape TM (i.e., a TM with one input tape and one work/output tape).

This is an important model, with some artistrary choices. Church - Turing Thesis: Competable dors not depend on model of computations Extended Church-Turing Thesis. Efficiently computable does not depend on the model of computation, as long as its realistic.

Problen: Quartum computers.

II. Usual suspects A complexity class is any cet of (dession or country) problems. Typically interested in complexity classes defend by restraining the resources used by a Turing another (space, time, etc...) We'll start at the Fop. RE: recusively enumerable decision problems. LERE if there exists a Turing madrhe st For all $X \in \{0,1\}$, if L(X) = Yes, thenThe Turky anschine returns Yes when input x and extens the "HALT" schate.

Example: Halting Problem. Given or Turing anothere T, determe it Thelts who imput an empty string. In RE because we can tailed a Turing machine that cons other Foring madres Inside of it (Universal Turne unadule) Example (Homeomophism problem for PL-manitolds) L: {0113 x {0,13 } -> { Yes, No} L(X17) = { You it x and y reprocent trienculations of PL No otherwise.

CORE: Some as RE but swap col of YES and No. R: (ecuraive (or computable) Fundions, London by R= RE n coRE Intuture: a problem is in RIF there is a way to soke it algorithmically, but up we bounds on resources

Non-example: Norther Halty Problem nor Homeo.
Problem for PL-manifolds is in R. Example: 3-Marifold Homeomorphism Problem L: {0,13 * x {0,13 * >> { Yes, No} L(X,Y)= { Yes it x,y reprocut homeomorphic
PL-3:maitolds) No otherwise Why? Geometrization.