Meet	ing	4.1	A su	ngttering	f co	mplex: +1	1 continued	· · · · · · · · · · · · · · · · · · ·
Į.T	he	USUA	Suspe	ets: P	, <mark>FP</mark> , N	P, PSPACE	E, EXP, #P,	ER, R, RE
				hardnes			· · · · · · · · · · ·	
	• •							
	• •							
· · · · · ·	• •		· · · · ·	· · · · · · ·	· · · · · ·	· · · · · · · ·		
· · · · · ·	• •	· · · ·	· · · · ·	· · · · · · ·	· · · · · ·	· · · · · · · ·	· · · · · · · · · ·	
· · · · · ·		· · · ·	· · · · · ·	· · · · · · ·	· · · · · ·	· · · · · · · ·	· · · · · · · · · ·	
	• •					· · · · · · · ·		
	• •	· · · ·		· · · · · · ·	· · · · · ·	· · · · · · · ·	· · · · · · · · · · ·	
	• •							· · · · · · · · · · · · · · · ·

Note PENPEPSPACEEEXPEERERE
Except Has
Expect these are all strict ER: elementary recursive Functions. To unpack, let's
have TIME (F(n)) be q/1 decision problems that can be solved on Turing inachine that runs in time
O(F(n)), where h is the size (i.e. lensth) of input. Likewise, can detre SPACE (F(n)).
$\mathcal{L}(\mathcal{H}(\mathcal{U}, \mathcal{H}))$ can be define $\mathcal{L}(\mathcal{L}(\mathcal{H}))$.

Then $ER = \bigcup TIME \left(\int_{k=1}^{k=1} d^{k-1} \right)$ Nice exercise: $ER = U SPACE (j^{2})$ $\left(\text{SPACE}(n) \subseteq \text{TIME}(\lambda^{n}) \right)$

Ex 3-Monstold Homeomorphism (There of G. L: {0,1}* x{0,1}* ~ { Yes, No } (() ~ (!)
(XIY) = { les IF x ad y encode haneo. Imaistold
Why? Geometrization: every 3-manitold can be cut up into pieces has canonical way so each piece can be
erdoured with one of 8 Thurston geometries (IE ³ , S ³ , H ³ ,)
Iden et algorithmi geometrize X and y in pars)lel, then Compare their geometric pieces.

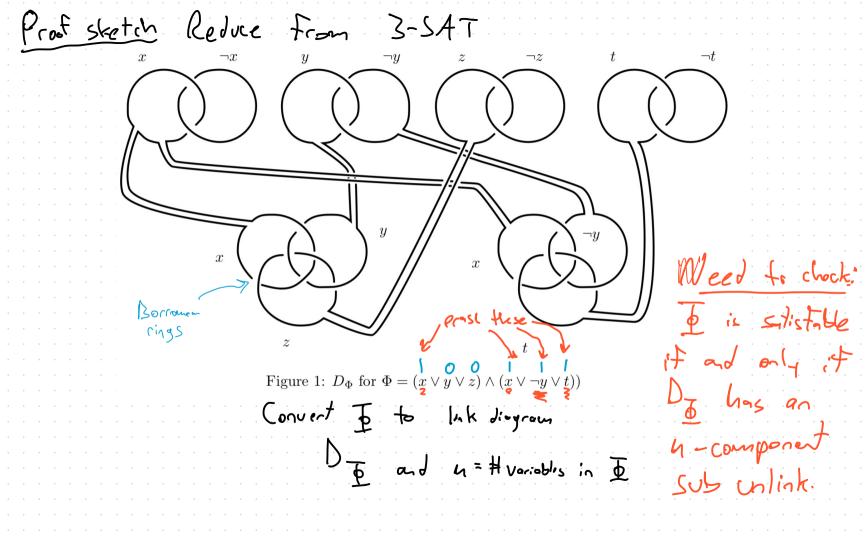
$E \times P = \bigcup TIME (2^{k}) = 2^{O(poly(m))}$ kz_{1}
$PSPACE = () SPACE(u^{k})$ $k \ge 1$
PSPACE EEXP (Note: if we need prive space For an algorithm, the Turing machine running the algorithm can be in at most O(IP ⁽ⁿ⁾) possible configurations.)
P= () TIME (nk). If a problem is in Pr we k=1 consider it eff: civily solvable.

NP: non deterministic polynomial time.
We say LENP if thre exists TM M and two
polynomials p(1), 7(1) such that for all input x
to L of length n=
1. IF L(x) = Yes, then exists yE {0,13 g(m) such that
$\mathcal{M}(x,y) = \text{Yes}.$
2. IF L(x)=No, M(x,y)=No for all yE {0,139(m)
3. M(xiy) (uns in time p(h) for all ye { 0/1} 7(h).
For such of Turing another we can call the
YEZOIIZZIN "proofs" or "intresses" or "certicates."
(They are not trustworthy, and M tests their credibility.)

Example SAT ("Boolean Sertistightility")
hstances of SAT are Boolen tormulas, e.g.
$(\times \vee_{\gamma} \vee_{z}) \wedge (\times \vee_{\gamma} \vee_{z})$
Preliemi given a Boolean tormula f(x1, x2,, x-1, decide 17 there is a input such that I evaluates to ((or "True") or that input.
Why is SAT in NP? Take the different possible input to Fas the certificates.
(F SAT (F): Yes, then of carse some input to F evaluates to True. And of carse if SAT (F): No, no input will fool the procedure.

Ex Graph 3-colorability
Instance: Graph F, e.g. as adjacency matrix
Problem: Decide if I has a valid vertex 3-coloring.
Witness: $p: V(\Gamma) \rightarrow \{R, G, B\}$
Oiven a vitness, we can quickly verity whether or not
Given a vitness, we can quickly verify whether or not it yields valid graph coloring.

Ex Kruot 3-coloral:1:ty
Instance. Knot diagram
Problem: Decide it we can color connected arcs of diagram
with 3-colors so at each crossing, either 3 colors
are seen, or just 1. Also require that we use all
3 colors.
okay! okay! 670!


Vitnesses: p: {arrs} ~ {R,G,B}	7 Ca	chock i	
. .	7.t	3-color cble	• • • • • • • • • • • • •

II. Reductions and hardness Given two problems Loud K, 9 Korp (eduction r is polynomial time computeble Function such that For all XE { O(1} we have L(x) = K(r(x)). {0,1}* -> { Yes, No} r 1 { 0,13 * K Such an r is a reduction From L to K. We interpret K as being at least as hard as L.

Another type of reduction:
polynomial - time Turing reductions (alka "Code reductions")
Given a problem K, an oracle Turing machine For K
is a usual Turing machine, together up a black box
that solves instances of K in one time step.
pK = all problems solvable in poly firm on a Turing machine w/ oracle for K.
We say L is Cook reducible to K IF LEPK.
Karp reduction => Cook reduction, but not converse.

A problem K is NP-hard iF For all LENP, there exis	fr i i
- Karp reduction from L to K. IF, moreover, KE. We say K is NP-complete.	· · · · ·
	· · · · ·
NF-complete in NF + "NF-hard"	· · · · ·
NP-had is trousitive under Korp reduction.	· · · · ·
Theorem (Cook - Levin)	· · · ·
SAT is NP-complete.	· · · · ·
So is 3-SAT	· · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · ·

Ex (de Mesuray, Rieck, Sedguick, Tarer)		
Trivial Sublink problem is NP-gonglete.		
Instance: a link diagram L	and natural number u	
Problem: decide it I has an	n-component unlink that	
is a frivial lak.		
	 	
	· · · · · · · · · · · · · · · · · · ·	
e-g-		
	<pre></pre>	

