Meeting 4.1: A smattering f complexity, continued
I. The usual suspects: $P, F P, N P, P_{S P A C E}, E X P, \# P, E R, R, R E$
II. Reductions and Mardmess

Note

$E R:$ elementary recursive Functions. To unpack, lett's have TME $(f(n))$ be all decision problems that can be solved on Turing machine that runs in time $O(f(n))$, where n is the size (io. length) of input. Likewise, con dethe SPACE (fin)).

Then

$$
E R=\bigcup_{k \geq 1} \operatorname{TinE}(\underbrace{2^{2-\alpha^{n}}}_{k})
$$

$$
\begin{gathered}
\text { Nive exerise: } \bigcup_{k Z 1} \text { SPACE }(\underbrace{2^{2} \alpha^{n}}_{\alpha^{2}}) \\
\left(\operatorname{SPACE}(n) \subseteq \operatorname{TIME}\left(2^{n}\right)\right)
\end{gathered}
$$

Ex 3-Monifolt Homeomophism
(Thooran of G.

$$
L:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\left\{Y_{e s}, N_{0}\right\}
$$

Kuperberg)
$L\left(x_{1 y}\right)=\left\{\begin{array}{l}\text { les if } x \text { ad } y \text { erode hareo. J mavioly } \\ N_{0} \text { othrwise }\end{array}\right.$
Why? Geometrization: every 3-minitold can be cut up into pieces in a canonical way so each piere can be adowed with one of 8 Thurston geometres

$$
\left(\mathbb{E}^{3}, S^{3}, \frac{H^{3}}{3}, \ldots\right)
$$

Iden of algorthim: geanetrige x ad y in parillel, thon Compare their geometric pieces.

$$
\begin{aligned}
& \text { EXP }=\bigcup_{k \geq 1} \operatorname{TIME}\left(2^{n^{k}}=2^{O(p o l y}(n)\right) \\
& \text { PSPACE }=\bigcup_{k \geq 1} S P A C E\left(n^{k}\right)
\end{aligned}
$$

$P S P A C E \subseteq E X P$ (Note: if we need pau) spore For a algorithm, the Turin machine cunning the algorithm can be in at most $O\left(\alpha^{p(n)}\right)$ possible configurations.)
$P=\bigcup$ TIME $\left(n^{k}\right)$. If a problem is in P_{1} we $k \geq 1$ consider it efficiulty solvable.

NP: non deterministic polynomial time.
We say $L \in N P$ if there exists $T M$ and two polynomials $p(n), q^{(n)}$ such that for all input x to L of length u :

1. If $L(x)=$ Yes, then exists $y \in\{0,1\}^{q(n)}$ such that $M(x, y)=$ Yes.
2. If $L(x)=N_{0}, \quad M(x, y)=N_{0}$ for all $y \in\{0,1\} q(n)$
3. $M(x+y)$ runs in tine $p(n)$ for all $y \in\{0,1\}^{q(n)}$.

For such a Turfy machine we can call the $y \in\{0,1\}^{q(n)}$ proofs" or "witnesses" or "certicales." (They are not trytworthy, and M tests their credibility.)

Example SAT ("Boolean Sakis Fin, split ${ }_{Y}^{\prime \prime}$)
hstances of SAT are Boolean formulas, c.g.

$$
(x \vee y \cup z) \wedge(x \vee-y \cup t)
$$

Problem: given a Boolean formula $f\left(y_{1}, y_{2}, \ldots, y_{1}\right)$, decide if there is a input such that F evaluates to 1 (or "True") on that input.
Why is SAT in NP? Take the different possible input to f as the certificates.
If SAT (f) = Yes, the of carse some input to f evaluates to True. And of course if $S A T(f)=$ No, no input will Fool the procedure.

Ex Graph 3-colorability
Instance: Graph Γ, egg. as adjacency matrix
Problem: Decide if Γ has a valid vertex 3 -coloring.
Witness: \quad : $V(\Gamma) \rightarrow\{R, G, B\}$
Given a witness, we can quickly verify whether or net it yields valid graph coloring.

Ex Knot 3-colorability
Instance: Knot diagram
Problem: Decide if we can color connected arcs of diagrams with 3 -colors so at each crossing, either 3 colors are seen, or just 1 . Also require that we use all 3 colors.

Witresses:

$$
p:\{\operatorname{arrs}\} \rightarrow\{R, G, B\}
$$

Cas chock it's not 3-color able.
II. Reductions ad hardness
(also "polmanial time many - ore")
Give tue decurion problems L and K, a fop reduction r is polynomial time computable function such that For all $x \in\{0,1\}^{*}$ we have $\left.L(x)=K \operatorname{Kr}(x)\right)$.

$$
\begin{aligned}
& \{0,1\}^{*} \xrightarrow{L}\{\text { Yes, No }\} \\
& \Gamma \downarrow \\
& \left\{0_{1} 1\right\}^{*} / K
\end{aligned}
$$

Such an r is a reduction From L to K. We interject K as beng at least is hard as L.

Another type of reduction:
polynomial -time Turing reductions (alk "Code reductions")
Given a problem K, as oracle Turing machim for K is a usual Turing machine, together 4 a black bo k that solves instances of K in one time step.
$p^{K}=$ all problems solvable in poly firn on a Turing machine $w /$ oracle for K.
We say L is Cook reduable to K if $L \in P K$.
Karp reduction \Rightarrow Cook reduction, but not converse.

A problem K is NP-Land if for all $L \in N P$, thare exists \rightarrow Karp reduction from L to K. IF, moreover, KENP, we s-ry K is NP-complete.

$$
N P \text {-complete }=\text { "in } N N^{\prime}+\text { "NP-hard" }
$$

NP-had is tronsitive under Korp ceduction.
Thaorcm (Cook-Levin)
SAT is NP-complete.
So is $3-5 A T$

Ex y (de Mesmer, Reck, Sedguick, Taser $)$ Trivial sublink problem is NP- hardete. Instance: a link diagram L and natural number a Problas: decide if L has an a-camponet unlink that is a trivial link eg.

Prof sketch Reduce from 3-SAT

