Meeting 4.2: The complexity of unknot recognition
I. In NP via normal surface theory (Hass-Lagains-Pippenger, after Hake)
II. In NP via Reidemeister moves (Lackenby)
III. In coNt, modulo GRH (Kuperberg)
IV. In cons (Lackenby)

Next weeks: quantum mechanics and quatum computing

Problem: Unknot Recognition
Instance: Knot diagram K
Questioni Is K the Unknot?
K is an unknot if:

1. it's equivalent under a sequence of Reidemesster moves to a diagram wot crossings
2. if K bounds an embedded disk
3. $\pi_{1}\left(S^{3}-K\right) \cong Z_{1}$ infinto cyclic group

I. In NP via normal surface theory (Hass-Lagariss-Pippenger)

The Computational Complexity of Knot and Link
Problems
Journal of the ACM, Vol. 46, No. 2, March 1999, pp. 185-211.

JOEL MAS
University of California, Davis, Davis, California

JEFFREY
 C. LAGARIAS

AT\&T Laboratories, Florham Park, New Jersey
AND
NICHOLAS PIPPENGER
University of British Columbia, Vancouver, BC, Canada

In this paper, we consider knots and links as represented by link diagrams and take the crossing number as the measure of input size. We can now formulate the computational problem of recognizing unknotted polygons as follows:

Problem: UNKNOTTING PROBLEM

Instance: A link diagram \mathscr{D}
Question: Is \mathscr{D} a knot diagram that represents the trivial knot?
See Welsh [1993a-1993c] for more information on this problem. The main result of this paper is the following:

Theorem 1.1 The unknotting problem is in NP.

The unknotting problem was shown to be decidable by Haken [1961]; the result was announced in 1954, and the proof published in 1961. From then until now, we know of no strengthening of Haken's decision procedure to give an explicit complexity bound. We present such a bound in Theorem 8.1.

Given F_{1} triangulated 3-mavi $F_{0}\left(d_{1}\right.$ we can describe "normal surfaces" using certain vectors $\mathbb{Z}^{7 t}$, where t is \# tetramedra in r.
Inside each tetrahedron T_{1} we have 7 types of elementary disks:

A vector $v \in \mathbb{Z}^{7 t}$ determins a normal surface if

- $v_{i} \geq 0$ for each $i=1, \ldots, 7 t$
- "matching condition" for each pair of fores that are glued together of the form

$$
v_{i_{1}}+v_{i_{2}}=v_{k_{1}}+v_{k_{2}}
$$

- "quad condition": For each tetrahedron, see at most one quad type

Basic iden: effectivizing Hagen's normal surface theory

1. Given K_{1} a $K_{n o t}$ diagram with n crossings, can build triangulation of $M_{K}:=S^{3}-N(K)$ in time $O(n \log n)$ with $t=O(n)$ tetramedra, in standard way.
Certificate: A vector $v \in \prod^{7 t}$, and a list of $7 t-1$ linear constraints, with $v_{i} \leqslant \alpha^{7 t-1}$
2. Test that v encodes a normal surface b_{y} verifying it satisfies:
" "matching equations"

- positivity: $\left.v_{i} \geq 0 \quad \forall i=1, \ldots, 7 t\right\} \begin{aligned} & \text { Define Halepin's norman } \\ & \text { cone } C_{M} \text { in } \mathbb{R}^{7 t}\end{aligned}$
- "quad Conditions" \sim Nalalear, but easy to chock

3. Verify the 7t-1 linear constraints are indeperdetf v satis $F_{i e s}$ them, and $\operatorname{gcd}\left(v_{1}, \ldots, v_{7 t}\right)=1$. This shows v is a "vertex minimal' integer pout in C_{M}.
4. Vertex minimality ensures v represents a connected normal surface. Now check v represents a disk (compute x) and has correct boundary on $\partial M_{k}=S^{\prime} \times S^{\prime} \quad\left(\right.$ heck $\left.[\partial v]=(0,1) \in H_{1}\left(s^{\prime} \times s^{\prime}\right)\right)$. Procedure works by theorem of Jaco-Tolletson saying if K is Unknot, it his a vertex minmial disk. HLP shoved there exists one $w / v_{i} \leq 2^{7 t-1}$.

L4

A polynomial upper bound on Reidemeister moves

By Marc Lackenby

Theorem 1.1. Let D be a diagram of the unknot with c crossings. Then there is a sequence of at most $(236 c)^{11}$ Reidemeister moves that transforms D into the trivial diagram. Moreover, every diagram in this sequence has at most $(7 c)^{2}$ crossings.

Theorem 1. Given an unknot diagram D and an integer k, deciding if D can be untangled using at most k Reidemeister moves is NP-complete.

Advances in Mathematics 381 (2021) 107648
 ELSEVIER

Contents lists available at ScienceDirect
Advances in Mathematics

Arnaud de Mesmay ${ }^{\mathrm{a}, *}$, Yo'av Rieck ${ }^{\mathrm{b}, *}$, Eric Sedgwick ${ }^{\mathrm{c}, *}$, Martin Tancer ${ }^{\mathrm{d}, *}$
a Université Paris-Est, LIGM, CNRS, ENPC, ESIEE Paris, UPEM, Marne-la-Vallée, France
${ }^{\text {b }}$ Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR 72701, USA
${ }^{c}$ School of Computing, DePaul University, 243 S. Wabash Ave, Chicago, IL 60604, USA
${ }^{\text {d }}$ Department of Applied Mathematics, Charles University, Malostranské nám. 25,
11800 Praha 1, Czech Republic
III. In coNS, modulo GRH (Kuperberg)

Opposite question (Knottedners detection) rostaxi: Knot diagram K
Question: Is K NOT the chknot?

Knottedness is in NP, modulo GRH
Greg Kuperberg ${ }^{1}$
Department of Mathematics, University of California, Davis, CA 95616, United States

Theorem 1.1. Let $K \subset S^{3}$ be a knot described by a knot diagram, a generalized triangulation, or an incomplete Heegaard diagram. Then the assertion that K is knotted is in NP, assuming the generalized Riemann hypothesis (GRH).

Together with Hass-Lagarias-Pippenger, we can restate the result as

$$
\begin{aligned}
\text { Unknottedness } \in \frac{N P \cap \text { coNS, }}{N} & \\
& \text { Problems in here are } \\
& \text { believed not to be } N P \text {-hard. }
\end{aligned}
$$

Our proof of Theorem 1.1 quickly follows from major results of others. Kronheimer and Mrowka [20] showed that if K is a non-trivial knot, then there is a non-commutative representation of

Then, simply because the equations for the representation are algebraic, the complex numbers can be replaced by a finite field \mathbb{Z} / p. Koiran [19] showed that if a polynomiallength set of algebraic equations has a complex solution, and if GRH is true, then there is a suitable prime p with only polynomially many digits. Thus, the certificate is a prime p and a 2×2 matrix over \mathbb{Z} / p for each generator of the knot group. The verifier must check that the generator matrices satisfy the relations of the knot group; and that they do not all commute, or in the Wirtinger presentation, that they are not all equal. This confirms that K cannot be the unknot.

Knottedness is in NP, modulo GRH
IV. In coNA (Lackenby)

THE EFFICIENT CERTIFICATION OF
KNOTTEDNESS AND THURSTON NORM
marc lackenby 2020 prepeit

