<u>Meeting 5.1</u> : Qua I. The postulates	ntum Mechani	'ςς		· ·
Section 2.2 of 1	lielsen - Ch	Jang		· ·
Quantum Computation and Quantum				. .
Information MICHAEL A. NIELSEN and ISAAC L. CHUANG		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · ·
	· · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · ·

I. Postulates of quantum mechanics
1. What we quantum states?
In How can quantum states evolve over theme?
3. How do we measure quatur states and how are
quatum states affected by measurement?
4. What do composite systems look like?
The axions specify the mothematica) frame work for aswering
these questions. The work of a physicist is to understand,
ter a specific system, what the spectic mathematica) objects are.
We will take a practical, mathematical approach to the axions,
and ignore (at least for now) their physical justification (e.g. Bell inequilities

Dirac bra-ket ystation

Con Use that F notation F and the m

Notation	Description
<i>z</i> *	Complex conjugate of the complex number z .
	$(1+i)^* = 1-i$
$ \psi angle$	Vector. Also known as a ket.
$\langle \psi $	Vector dual to $ \psi\rangle$. Also known as a <i>bra</i> .
$\langle \varphi \psi \rangle$	Inner product between the vectors $ \varphi\rangle$ and $ \psi\rangle$.
$ arphi angle\otimes \psi angle$	Tensor product of $ \varphi\rangle$ and $ \psi\rangle$.
$ \varphi angle \psi angle$	Abbreviated notation for tensor product of $ \varphi\rangle$ and $ \psi\rangle$.
$ \begin{array}{c} $	Complex conjugate of the A matrix.
A^T	Transpose of the A matrix.
A^{\dagger}	Hermitian conjugate or adjoint of the A matrix, $A^{\dagger} = (A^T)^*$.
mps	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{\dagger} = \begin{bmatrix} a^* & c^* \\ b^* & d^* \end{bmatrix}.$
$\langle \varphi A \psi \rangle$	Inner product between $ \varphi\rangle$ and $A \psi\rangle$.
	Equivalently, inner product between $A^{\dagger} \varphi\rangle$ and $ \psi\rangle$.

<u>l.</u> St	ates are vectors in a Hilbert space complete
	Postulate 1 : Associated to any isolated physical system is a complex vector space with inner product (that is, a Hilbert space) known as the <i>state space</i> of the system. The system is completely described by its <i>state vector</i> , which is a unit vector in the system's state space.
Often	, but not always, a state space also has a preferred basis
	putation) Gasist)
	ng Unlike in classical computing a state is not a list of coefficients! The
· · · · · ·	Coefficients can be computed, but we will get to ethat
· · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · ·	· · · · · · · · · · · · · · · · · · ·

E X=mples	<u>s</u> : quarte, quarte, qupite, qudite	
A qubit	t is any quartum system and a dimensional	state
Space, t-	-pically with a preferred basis	· · · · · · · ·
In other	words, (2 = span ({ 107, 11} } is a g	zubit.
	$(\frac{5}{10}) \neq 0$	· · · · · · · · · · · · · · · · · · ·
\bigcirc $3 + 1$	(³ = span {107, 117, 12}	
Qupiti	[P= Spon { 107,, [p-17], p prime	
	(d = span { 10],, 12-17}, m, J.	· · · · · · · · · · · · · · · · · · ·

<u>Amplitudes</u> IF 107,, 12-17 is an ONB and
14)= Signili' is any nonzero vector, we i=0
call the ai's (Unnormalized) quantum amplitudes.
Normalizing and projectivizing
If 147 is not unit length but is at least nonzero,
then $\frac{1+1}{\sqrt{(+1+1)}}$ is a state.
Well see shorthy, that scalar multiples can't be distinguished,
Mixed states So we could define state space as projective space.
These are classical mixtures of quantum states

2. Time evolution is a Uniter frastarmation

Postulate 2: The evolution of a *closed* quantum system is described by a *unitary transformation*. That is, the state $|\psi\rangle$ of the system at time t_1 is related to the state $|\psi'\rangle$ of the system at time t_2 by a unitary operator U which depends only on the times t_1 and t_2 ,

$$|\psi'\rangle = U|\psi\rangle \,.$$

"Infinitasimal Version">

(2.84)

(2.86)

Constant in

Global Version

Postulate 2': The time evolution of the state of a closed quantum system is described by the *Schrödinger equation*,

 $i\hbar \frac{d|\psi\rangle}{dt} = H|\psi\rangle.$

In this equation, \hbar is a physical constant known as *Planck's constant* whose value must be experimentally determined. The exact value is not important to us. In practice, it is common to absorb the factor \hbar into H, effectively setting $\hbar = 1$. H is a fixed Hermitian operator known as the *Hamiltonian* of the closed system.

Examples of Unitary time evolution For 9 gubit $\begin{array}{c} T = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ Pouli operators $\frac{|I|}{5} = \frac{1}{\sqrt{2}} \begin{pmatrix} |I| \\ |-I| \end{pmatrix} X also called "bit Flip"$ H tor "Hadonmard," Not Hand Horian! 2 called "(relative) phase Flip" (no classical anlog) $\frac{1}{2} | 0 \rangle = | 0 \rangle_1 \frac{1}{2} | 1 \rangle = -11 \rangle_1 \frac{1}{2} \left(\frac{10 + 11 \gamma}{\sqrt{2}} \right) = \frac{10 \gamma - 11 \gamma}{\sqrt{2}}$

Han: Itonians and energy eigenstates (iver eigenvectors of Harmitian operators)
A Homiltonian is simply a self-adjoint operator H.
(H ^t = H), intended to encode the energies of
States
E:genectors are called energy eigenstates.
Recall: H is diagonalizable with real spectrum.
The eigenvalues of H are the "energy lovels" of
the system.
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

Different: ote Global (nfinitesime) Version Integrate/Solve Schrödinger equition $i = \frac{d + (t)}{dt} = \frac{1}{t} + \frac{1}{t}$ Unitory! $\frac{d \left| \psi(t) \right\rangle}{dt} \approx -\frac{iH}{t_1} \left| \psi(t) \right\rangle$ $|\gamma(t)\rangle = \int_{0}^{t} -\frac{iH}{t} |\gamma(\tilde{t})\rangle d\tilde{t} = \left[e^{-\frac{itH}{t}}\right] |\gamma(0)\rangle$

3. Measurements are certain collections of linear operators (XXX)

Postulate 3: Quantum measurements are described by a collection $\{M_m\}$ of *measurement operators*. These are operators acting on the state space of the system being measured. The index m refers to the measurement outcomes that may occur in the experiment. If the state of the quantum system is $|\psi\rangle$ immediately before the measurement then the probability that result m occurs is

given by

$$p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle , \qquad (2.92)$$

(2.93)

(2.94)

and the state of the system after the measurement is

$${M_m|\psi
angle\over \sqrt{\langle\psi|M_m^\dagger M_m|\psi
angle}} \ .$$

The measurement operators satisfy the completeness equation,

$$\sum M_m^{\dagger} M_m = I \,.$$

Example: Measuring a qubit in computational basis
$\mathcal{M}_{0} = 0\rangle \langle 0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathcal{M}_{1} = 1\rangle \langle 1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ $(0 \times 01)^{2} = 10 \times 50107 \langle 0 = 10 \times 101$ $\mathcal{M}_{0}^{t} = \mathcal{M}_{0} = \mathcal{M}_{0}^{2} a_{-} \partial, \mathcal{M}_{1}^{t} = \mathcal{M}_{1} = \mathcal{M}_{1}^{2}$
$N_{o}te: \qquad M_{o}^{t} = M_{o} = M_{o}^{1} \qquad a_{n} d \qquad M_{i}^{t} = M_{i} = M_{i}^{2}$
but this need not be the case for general mensurements.
but this need not be the case for general measurements. Completeness equation follows immediately
$E_{.g.}$ $ 4\rangle = \frac{1}{\sqrt{5}} (2 0\rangle - 3 1\rangle)$
Prob 147 winds up in state 1: { IF 147 does vind up in state 1, then its state is
$\langle \Psi M_0^{t} M_0 \Psi \rangle = \langle \Psi M_0 \Psi \rangle$ =

Mensurements can not detect global phase Mus measured on 147 US. eⁱ⁰147: $(e^{i\theta}(\psi))^{t} = \langle \psi | e^{-i\theta}$ so {24/e-i0 Mt Musei0/27 = {24/Mus Mus 127) <u>Take-away</u>: Since measurements carlt distinguish scalar multiples of a state, we should consider them physically indistinguishable.

Measurements can relicity distinguish orthogonal vectors
Given orthogonal normal states 124,7 and 14,2,
lie can prepare measurements
$\mathcal{M}_{1} = \mathcal{Y}_{1}\rangle\langle\mathcal{Y}_{1} , \mathcal{M}_{2} = \mathcal{Y}_{2}\rangle\langle\mathcal{Y}_{2} $
and $M_0 = I - M_1 - M_2$.
You can check that the probability distributions
are: $w_1 = w_1 =$

Box 2.3: Proof that non-orthogonal states can't be reliably distinguished

Measurements can probabilistically distinguish independent vectors

A proof by contradiction shows that no measurement distinguishing the nonorthogonal states $|\psi_1\rangle$ and $|\psi_2\rangle$ is possible. Suppose such a measurement is possible. If the state $|\psi_1\rangle$ ($|\psi_2\rangle$) is prepared then the probability of measuring j such that f(j) = 1 (f(j) = 2) must be 1. Defining $E_i \equiv \sum_{j:f(j)=i} M_j^{\dagger} M_j$, these observations may be written as:

 $\langle \psi_1 | E_1 | \psi_1 \rangle = 1; \quad \langle \psi_2 | E_2 | \psi_2 \rangle = 1.$ (2.99)

Since $\sum_i E_i = I$ it follows that $\sum_i \langle \psi_1 | E_i | \psi_1 \rangle = 1$, and since $\langle \psi_1 | E_1 | \psi_1 \rangle = 1$ we must have $\langle \psi_1 | E_2 | \psi_1 \rangle = 0$, and thus $\sqrt{E_2} | \psi_1 \rangle = 0$. Suppose we decompose $|\psi_2 \rangle = \alpha |\psi_1 \rangle + \beta |\varphi\rangle$, where $|\varphi\rangle$ is orthonormal to $|\psi_1 \rangle$, $|\alpha|^2 + |\beta|^2 = 1$, and $|\beta| < 1$ since $|\psi_1 \rangle$ and $|\psi_2 \rangle$ are not orthogonal. Then $\sqrt{E_2} |\psi_2 \rangle = \beta \sqrt{E_2} |\varphi\rangle$, which implies a contradiction with (2.99), as

$$\langle \psi_2 | E_2 | \psi_2 \rangle = |\beta|^2 \langle \varphi | E_2 | \varphi \rangle \le |\beta|^2 < 1, \tag{2.100}$$

where the second last inequality follows from the observation that

 $\langle \varphi | E_2 | \varphi \rangle \le \sum_i \langle \varphi | E_i | \varphi \rangle = \langle \varphi | \varphi \rangle = 1.$ (2.101)

Projective measurements: A projective measurement is described by an *observable*, M, a Hermitian operator on the state space of the system being observed. The observable has a spectral decomposition,

3. Measurements can be understood from "projective menuruts" (***)

$$M = \sum_{m} m P_m \,, \tag{2.102}$$

where P_m is the projector onto the eigenspace of M with eigenvalue m. The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable. Upon measuring the state $|\psi\rangle$, the probability of getting result m is

given by

$$p(m) = \langle \psi | P_m | \psi \rangle . \tag{2.103}$$

(2.104)

Given that outcome m occurred, the state of the quantum system immediately after the measurement is

 $P_m |\psi\rangle$

p(m)

Statistics are easy to extract from projective measurements Expectation value of M in state 147: $\mathbb{E}(\mathcal{M}) = \sum_{m} m p^{(m)} = \sum_{m} \sqrt{24} P_m \sqrt{24}$ $=\langle \mathcal{Y}|\Sigma_{m}P_{m}|\mathcal{Y}\rangle$ Standard deviation: = (7/117). $\Delta(M)$ $= \mathbb{E}(M)^{2} - \mathbb{E}(M^{2}) = ((M^{1}M^{1}M^{2}))^{2} - (2M^{2}M^{2})^{2}$ Heisenberg uncertainty: $\Delta(c)\Delta(D) \ge \frac{[\langle 4|[c_iD]]4\rangle]}{2}$ Proof: Use Cauchy - Schurge 2 ...-

Examples Pauli operators! Every Herenitan operator on C ² is a IR-linear combination of Pauli operators. or I+6X+cY+dZ	
Hamiltonians are energy obsorvables (that's My they control dynamics Allow us to answer questions like: "Given state 142, that is the probability it has a certain energy?")

tensor Aroducts sustems are 4. Lomposite

Postulate 4: The state space of a composite physical system is the tensor product of the state spaces of the component physical systems. Moreover, if we have systems numbered 1 through n, and system number i is prepared in the state $|\psi_i\rangle$, then the joint state of the total system is $|\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_n\rangle$.

IF system A described by Hilbert space Af	· · · ·
$\mathcal{A}_{\mathcal{B}_{1}}$	· · · · · · · · · · · ·
then the composite system AB is	· · · ·
AB := HA & HB.	· · · ·

Curse of dimensionality (blessing?) State space of n quaits is $(\begin{array}{c} & & \\ &$ n times JN d'imension