Meeting 5.2: Digging into quantum states
I. "Completely understanding" of guantum state
I. No closing
II. Distinguishing states, Cedux
IV. Some good news: the Deutsch - Jozsa algor: Hum.
· · · · · · · · · · · · · · · · · · ·
Next time: Quantum circuits as model of quantum computers, and BQP.
Next time: Quantum circuits as model of quantum computers, and BQP. Note: live given up telling myself I'm going to Tex separate notes.

Summary of axions of quantum mechanics: 1. States are nonzero (unit) vectors in a Hilbert space. 2. Physica) tractormations of closed systems are unitary. 3. A quatum state 147 nd measurement & Moj..., MK3 determine a probability distribution on 20,..., k}. 4. Composite sustems are tensor products.

I. "Completely understanding" a quantum starte
In classical computer with an n-bit memory register it is easy to read off
information that completely determines the register's state: just read each
each bit one after the other.
This is NDT true of quantum systems.
Suppose we have an n qubit system (thought of as a quantum
memory) which is in a state $ \gamma \rangle E(\mathbb{C}^{2})^{\otimes n}$.
How can we convince ourselves we completely understand 197?
It depends on 1977 and what we mean by "Completely understand."

One iden: determine all of the coefficients of 14)
in a preferred basis.
OF course, MY can be made part of some basis,
but our "preferred basis" shouldn't depend on 127).
For a gubsts, we use the tubor product basis as
our computational basis.
$ O\rangle = (000) = 0\rangle \otimes 0\rangle \otimes \otimes 0\rangle E([0)) \otimes u$
> = (00 ··· 1> = (0) 02 107 00 ··· 00 11> / 000 quanter terois
12) = 10 10) = 10> @ @ 11) @ 10> (~h if the)
States, an tell
$ N-1\rangle = (1 -1) = (1) \otimes (1) \otimes - \otimes (17) \text{ where } N = 2^{n}$.) is which one.

In principle, we know there exist an N-1 E I such fligt
$ \Psi\rangle = \sum_{i=1}^{n} a_i i\rangle_i \sum_{i=1}^{n} a_i ^2 = 1.$
tou do me determine the a;?
Well, there are exponentially many! So let's try For go only
We need to Find some measurement or observable that
will help us determine 90.
OF course,
a = <0/4>, so we could fry
$M_0 = 07\langle 0 , M_1 = I - 07\langle 0 .$
$ = \left[$

with this measurement, probability of getting outcome O on 1247 is
p(0) = <y (note="" (y)="" 9="" mo="" projector)<="" td="" =""></y>
= <710> <017>
$= \gamma_0^{\times} \gamma_0$
$= \left \alpha_0 \right ^{2}$
So, with this choice of measurement, the best we can
do is see 1900 as a probability of a certain at come.
determine du itself, but let's sunnele me're centent
just to know the probability. How can we really do that?

Well, if we make the above measurement, either
we get autcome O with probability proj = /00/2, or
we get outcome I with probability
p(1) = (4/M, 14) = (4/(I-10)(0)) 4)
$= \langle 4 I 4 \rangle - \langle 4 0 \times 0 4 \rangle$
$= \gamma ^{2} - \gamma_{0} ^{2}$
$= - q_0 d$
Performing this measurement only once, we can't expect
to determine anything beyond whether it seems, probabilistically
that 190/2712 or 190/2 = 1/2.
It we want to do better, we have to do another measurement!

But the First measurement spoiled 147 [F we got out come O, then 147 has be ingote into 0). IF we got outcome I, then 147 is now in state $\frac{M_{1}147}{\sqrt{p(1)^{2}}} = \frac{1}{\sqrt{1-\ln^{2}}} \left(147 - \alpha_{0} | 07 \right) = | 1 \right)$ In the First Case, if we perform the measurement again on the new state, we of course just get back 10>. Likewise, in the second case, $M_{o}\left(\frac{M_{1}|W_{2}}{V_{p(1)}}\right) = O_{1}M_{1}\left(\frac{M_{1}|W_{2}}{V_{p(1)}}\right) = \frac{M_{1}^{2}(W_{2})}{V_{p(1)}} = \frac{M_{1}|W_{2}}{V_{p(1)}}$

So if we want to understand (90) better than whithe
it's more likely that last 2 1/2 or last 4 /2, we
would seem to want to have another copy of 14>
we could measure. We need to run our measurement experiment
on (4) again.
IF we had non copies of 147 at our disposil, we could
do the negarement on all of them. If we did so k thing
then, with high pobelity, we can expect
$ g_0 ^2 - \frac{\# of O outcomes}{k} \leq O\left(\frac{1}{\lambda k}\right).$
This could be made more precise

Take-away: IF we have an unlimited supply of copies of IY?
We can, with high produbility, approximate loold in bainary
reasonably efficiently.
$\frac{1}{1}$
. Maybe there's a better measurement to take?
There's not.
2. What if we don't have no conver of 142?
h/pire SUNK
· · · · · · · · · · · · · · · · · · ·

II. No cloning Soutimes: (07 will men 10) On
In short: there's no unitary way to copy quatur
States.
(hun het n?m. Then there is no unitary trasformation
$V: (T^{m} \otimes (T^{n} \rightarrow) (T^{m} \otimes (T^{n} \rightarrow))$
such that ((1478/0))= 1478/478/0)
For all 147 E (m.
Proof: There call be, because
14/0/07 F> 14/0/14/0/0)0n-m
is not linear!

· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	0 0 0	•	•	· ·		•	•	•	•	•	· ·	•
•	•	S	D D		Ч		ہ e	•	•			י ס	н н с	•	•		۰ ۲ ۲	J.	י ר ל	•	•	e Q)ε	°þ	e	•	•	•	י {כ		•			DN	~	p	c	, }	e	 _	•	•	V-	י סר	le	٢	;7e	n C)))	· · · · ·	•
• •		S	+- -	ر م	0	5	•		41	V	- -	+	•	۲,	÷ V	/ R	• • •	•	•	f	۲ ۲	0	Ļ	, , ,	•	Ļ	78	ק נ	~ ~	•	•		2	• •	p	- 		0	م مو ا	, Ce	2,	•	• •	•	•	•	•	•	•	· ·	•
	•	0			•	•	0			•	•	•	•	0	0	•	0	0	•	0	0		0	0	0	0	0	0	•	0	•	•	•	• •		0	•	•	•	0	•	0	• •	-	•			•		• •	•
• •					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		0	•	•	•	•	0	•	•	•					•		•	•	•	•	•	• •		•			•	•	• •	
• •	0		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•		• •		•	•	•	•	•	•	•	0 0	0	0	•	•	•	•	• •	•
•	•		•	•	•	•	•	•	•	•	•	•	•	•			•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•		• •	•	•		•	•	•	• •	•
• •		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	• •				•	•	•	• •	•
	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •		•	•	•	•	•	•		• •	•	•			•		• •	•
	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		• •		•	•	•	•		•				•	•	•	•	•		•
	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		• •		•	•	•	•	•	•		• •		•			•	•		•
					•	•		•	•	•	•	•	•									•						•	•		•	•	•		•			•	•	•	•	•						•			
					•						•			•			•	•		•	•			•		•	•	0				0		• •		•			•		•	•	• •	0	0					• •	
							•																						•	•													• •					•	•		

II. Distinguishing states, redux
Instead it defermining 14? completely, we might be happy
to have a procedure to distinguish it from all other states
12) (so long as 107 7 eil 14) For some OER).
How night we go about this?
Basic iden From last filme: "prepare" measuremet
$M_{0} = 1475741$, $M_{1} = I - (24)5741$.
IF this measurement of (?) ever takes outcome 1, we know
18) is not equal to 147. This procedure works, but
Many issues! Can only get around all at them in special arcumstances

|. Maybe $|\psi\rangle = a |\psi\rangle + b |\psi\rangle (h|^2 + |b|^2 = 1)$ where (T/v)=0 and 1612 = Jk. Would expect to have to perform the measurement experiment 2th times before we see 187 isn't 1247. L. Just as before: need to have many copies of 14). 3. How do we "prepare the measurement" /247/24/ Would suffice to have a vay to prepare 14), i.e. 9 transformation that takes 107=10-07 to 1247. Can we do batter? IF U: [" -> [" does U/07 = 17], fly 14754187= U147541U5187=10>(01Ut18)

IV. Some good news: Deutsch-Jozsy algorithm
ENDUGH OF THE WARNINGS!
WHAT ARE QUANTUM STATES GOOD FOR?
Duyl to the moral that a guestion state stores
exponentially many classical probabilities (*) we have the philosophy.
ENTANGLEMENT IS
A RESOURCE.
(*): This does NOT mean we can reliably store an exponential quount of classical intormation in a linear # quits (Holevo bound)

Separable US. Entengled states Given a composite quatum system HAR = HA & HB, We say a state is separable if it's of the form $| \varphi_A \rangle \otimes | \varphi_B \rangle$ For some (PA7EHA, (PB)E)HR. IF 187EHAB is not separable, it is entraped.

Deutsch's Problem
Input: - black box Function
F: {0113 ~>> {0113
which is promised to be either.
j) Constant, or
ii) balanced, meaning $\#F^{-1}(o) = \#F^{-1}(1)$
Problem: Decide Mether F is constant or balanced.
Classically, requires 2"+1 evaluations of F.
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

IF we have access to guatur black box function For F, we can solve the problem in Constant time! $U_{\mathcal{F}}: (\mathbb{C}^2)^{\otimes n} \otimes (\mathbb{C}^2)^{\otimes n} \longrightarrow (\mathbb{C}^2)^{\otimes n} \otimes (\mathbb{C}^2)^{\otimes n}$ $|\chi\rangle \otimes |\chi\rangle \longrightarrow |\chi\rangle \otimes |\chi \otimes |\chi \otimes f(x)\rangle$ Boolean addition ancilla quests of bit strings TL: flips Y' = Trst(7) L: t it <math>F(x) = 1 or does nothing T(x) = 0.

Details (Nielsen - (hung)

Algorithm: Deutsch-Jozsa

Inputs: (1) A black box U_f which performs the transformation $|x\rangle|y\rangle \rightarrow |x\rangle|y \oplus f(x)\rangle$, for $x \in \{0, \ldots, 2^n - 1\}$ and $f(x) \in \{0, 1\}$. It is promised that f(x) is either *constant* for all values of x, or else f(x) is *balanced*, that is, equal to 1 for exactly half of all the possible x, and 0 for the other half.

Outputs: 0 if and only if f is constant.

Runtime: One evaluation of U_f . Always succeeds.

Procedure:

1.
$$|0\rangle^{\otimes n}|1\rangle$$
 Q $\sqrt{7}$ aging Since
2. $\rightarrow \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} |x\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$
3. $\rightarrow \sum_x (-1)^{f(x)} |x\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$
4. $\rightarrow \sum_x \sum_x \frac{(-1)^{x \cdot z + f(x)} |z\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$
5. $\rightarrow z$

initialize state

create superposition using Hadamard gates

calculate function f using U_f

perform Hadamard transform

measure to obtain final output z

(- 0	י עע ני	eq	<u>t</u>	- ;	•	· ·	•	•	· ·		•	•	•	• •	•	•	· ·	•	· ·	•	•	• •	•	• •	•	•	••••	•	•	•		•	•	•	•	•	•		•	•	•
• •	([.]			- 1	rív) R	d'		ø r	0	>)e	n)		• •	0	0	• •	•		•	•	• •		• •			• •	•			• •					•		• •	0		•
· · •	<u>)</u> .		D	ミレ	12) 	•	·) (<u>-</u>	Ъ	le	ן רי	•	С	ر مر		Ē	20	. 6	e F	Ŧ	C:	فر	+)-	r J		50		10 0)		/17	ļι	י ר	•	•	•	••••	•	•	•
• •	•		hi	gl	י. ני	, p	ع)	ļ	2	6	· [17	~	•	6	5 SM	•	, 0	1			י אַרַי	5.0	۰ م)	, .	br Br	ן ס	Lq	Ľ	: :	st.	י'כ.	•	•	•	•	•	• •	•	•	•
• •	•	, , ,		С Г~1	P.(- 	e r	•	•	(\	~	r C	ہے ا	., -		•	:+	<u>ا</u> ر بر	-	2	90	י ר.י	H	، ابہ	• •	ן : (`מ	י ר ר	-	- -];;	۲ ۲	•		0 2	רי י	S.)	•	•	••••	•	•	•
	ر ک	•	A	pφ) }: }	>		2) J	Ć	5 ¢	م مربو	yo Go	l S	, , ,		Ĺ.	- -	י אכ	k	Ĩ	2 2 2	è∕ ≻	יגי גי	ļ	/\$.	•	//		ہ م	た	m		Ŀ	,/a	1 7 7	h		0	ן א א	N	•
0 0	•	•	• •		•	0	• •	•	•	• •		•	•	•	• •	0		• •		• •		•	• •	•	• •	•	•		•	•	•	• •		0	•	•	•	•			•	•
· ·	•	•	• •	•••••	•	•	· ·	•	•	• •	•	•	•	•	· ·	•	•	· ·	•	• •	•	•	· ·	•	• •	•	•	•	•	•	•	· ·	•	•	•	•	•	•	•	•	•	•
• • • •	•	•	· ·		•	•	· ·	•	•	· ·		•	•	•	· ·	•	•	· ·	•	· ·	•	•	· ·	•	• •	•	•			•	•	· ·	•	•		•	•	•	• •	•	•	•
· · ·	•	•	· · · · · · · · · · · · · · · · · · ·		•	•	· · ·	•	•	· · ·		•	•	•	· · ·	•	•	· · · · · · · · · · · · · · · · · · ·	•		•	•	· · ·	•	· · ·		•	· · ·		•	•	· · ·	•	•	•	•	•	•	· · ·	•	•	•
	•	•	· · · · · · · · · · · · · · · · · · ·	· · ·		•	· · · · · · · · · · · · · · · · · · ·	•	•			•	•	•	· · · · · · · · · · · · · · · · · · ·	•	•	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	•		· · ·	•	· · · · · · · · · · · · · · · · · · ·		•	•	· · ·	•	•	•		•	•	· · ·	•		•
	•	•	· · · · · · · · · · · · · · · · · · ·			•	· · · · · · · · · · · · · · · · · · ·	•	•	· · ·			•	•		•	•	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·		•	· · · · · · · · · · · · · · · · · · ·	•			•			•	•		· · · ·	• • • • •	•	•	•	•	· · ·	•		•
	• • • • • •		· · · · · · · · · · · · · · · · · · ·			•			•					•			•					•		•		· · · · · · · · · · ·					•						•			· · ·		•
			· · · · · · · · · · · · · · · · · · ·			- - - - - - - - -			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • •					· · · ·		• • • • • • • • • •					• • • • • • • • •						•			• • • • • • • •			• • • • • • •			· · · · · · · · · · · · · · · · · · ·		• • • • • • • • •	•
						- - - - - - - - - -		· · · · · · · · · · · · · · · · · · ·				• • • • • • • • • •												• • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	• • • • • • • •			· · · · · · · · · · · ·		•	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • •	
								• • • • • • • • • •											* * * * * * * * * * *			• • • • • • • • • • • •		• • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * *			• • • • • • • • • • •			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·					• • • • • • • • • • •				• • • • • • • • • • • •				• • • • • • • • • • •			• • • • • • • • • • • •													· · · · · · · · · · · · · · · · · · ·									• • • • • • • • • • •	