Meeting 5.2: Digging into quantum states
I. "Completely understanding" a quantum state
II. N_{0} cloning
II. Distinguishing states, redux
IV. Some good news: the Deutsch - Jozsa algor: the.

Next time: Quartuan circuits as model of quantum campulers, and $B Q P$.

Note: Ave given up telling myself I'm going to Tex separate notes.

Summary of axioms of quantum mechanics:

1. States are nonzero (unit) vectors in a Hilbert space.
2. $P h_{y s i c a l}$ trasformations of closed systems are unitary.
3. A quatum state $|\psi\rangle$ nd measurement $\left\{M_{0}, \ldots, M_{k}\right\}$ determine a probability distribution on $\{0, \ldots, k\}$.
4. Composite systems are fensor products.
I. "Completely understanding" a quantum state

In classical computer with an n-bit memory register it is easy to read off information that completely determines the register's state: just read each each bit one after the other.
This is NDT true of quantum systems.
Suppose we have an n quit system (thought of as a quantum memory) which is in a state $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$.
How can we convince ourselves we completely understand 147?
It depends on $|\psi\rangle$ and what we mean by "completely understand."

One idea: determine all of the coefficients of $|\psi|$ in a preferred basis.
Of course, $|4\rangle$ can be made part of some basis, but our "preferred basis" shouldn't depend on 147 . For n quarts, we use the tenor product basis as our computational basis.

In principle, we know there exist $a_{01} \ldots a_{N-1} \in \mathbb{C}$ such that

$$
|\psi\rangle=\sum_{i=0}^{N-1} a_{i}|i\rangle, \quad \sum_{i}\left|a_{i}\right|^{2}=1 .
$$

How do we determine the a_{3} ?
Well, there are exponentially may! So let's try for a_{0} only We need to Find some measurement or observable that will help us determine 90 .
of course,

$$
\begin{aligned}
a_{0} & =\langle 0 \mid \psi\rangle, \text { so we could fay } \\
M_{0}=|0\rangle\langle 0|, M_{1} & =I-|0\rangle\langle 0| . \\
& =|1\rangle\langle 1|
\end{aligned}
$$

With this measurements probability of getting outcome 0 on $|\psi\rangle$ is

$$
\begin{aligned}
p(0) & =\langle\psi| M_{0}|\psi\rangle \quad \text { (note } M_{0} \text { a projector) } \\
& =\langle\psi \mid 0\rangle\langle 0 \mid \psi\rangle \\
& =q_{0}^{*} 9_{0} \\
& =\left|a_{0}\right|^{2} .
\end{aligned}
$$

So, with this choice of measurement, the best we can ∂_{0} is "see" $\left|a_{0}\right|^{2}$ as a probability of a certain at cons. It turns out, with a little bit more cleverness, we cold determine a_{0} itself, but let's suppose were content just to know the probability. How car we "coaly" do thar l?

Well, if we make the above measurement, either we get outcome 0 with probability $p(0)=|90|^{2}$, or we get outcome 1 with probtilly

$$
\begin{aligned}
p(1) & =\langle\psi| M_{1}|\psi\rangle=\langle\psi|(I-|0\rangle\langle 0\rangle)|\psi\rangle \\
& =\langle\psi| I|\psi\rangle-\langle\psi \mid 0\rangle\langle 0 \mid \psi\rangle \\
& =|\psi|^{2}-\left|9_{0}\right|^{2} \\
& =1-\left|9_{0}\right|^{2}
\end{aligned}
$$

Performing this measurement only once, we cart expect to determine anything beyond whether it seems, probabilistically that $\left|a_{0}\right|^{2} \geqslant 1 / 2$ or $\left|9_{0}\right|^{2} \leqslant 1 / 2$.
If we wait to do better, we have to do another measurement!

But the First measurement spoiled $|\psi\rangle$!
|F we got outcome 0 , then $|\psi\rangle$ has he made int $|0\rangle$. IF wa got atcome I_{1} then $|\psi\rangle$ is now in state

$$
\left.\frac{M_{1}|\psi\rangle}{\sqrt{p(1)^{2}}}=\frac{1}{\sqrt{1-\left.M_{0}\right|^{2}}}\left(|\psi\rangle-a_{0}|0\rangle\right)=\mid 1\right)
$$

In the First case, if we perform the measurement again on the new state, we of course just get back $|0\rangle$. Likewise, in the second case,

$$
M_{0}\left(\frac{M_{1}|\psi\rangle}{\sqrt{p(1)}}\right)=0, M_{1}\left(\frac{M_{1}|\psi\rangle}{\sqrt{p(1)}}\right)=\frac{M_{1}^{2}|\psi\rangle}{\sqrt{p(1)}}=\frac{M_{1}|\psi\rangle}{\sqrt{p(1)}} .
$$

So if we wart to understand $\left|a_{0}\right|^{2}$ better tham whether it's more likely that $\left|a_{0}\right|^{2} \geq 1 / 2$ or $\left|a_{0}\right|^{2} \leq 1 / 2$, we would seem to want to have another copy of $|\psi\rangle$ we could measure. We need to run ar measurement experiment on $|\psi\rangle$ again.
IF we had many copter of $|\psi\rangle$ at our disposal, we could do the neasuremet on all ot them. If we did so k tiros, then, with high probability, we con expect

$$
\left.\left.\langle | 9_{0}\right|^{\alpha}-\frac{\# o_{0} t 0_{\text {outcomes }}}{k} \right\rvert\, \leq O\left(\frac{1}{2 k}\right)
$$

This could be made more precise...

Take-away: If we hove an Unlimited supply of copies of $[\psi)$, we can, with high probability approximate $\left|a_{0}\right|^{d}$ in binary reasonably efficiently.
Two is sues:

1. Maybe there's a better measurement to take?
There's not.
2. What if we don't have many copies of 1*)?

$$
\text { Were } \operatorname{sun} k 1
$$

II. No cloning

Sountives: 107 will men 10$\rangle^{\text {on }}$
In short: thee's mo unitary way to copy quantum states.

The Let $n \geq m$. Then there is no unfory transformation

$$
U: \mathbb{C}^{m} \otimes \mathbb{C}^{n} \rightarrow \mathbb{C}^{m} \otimes \mathbb{C}^{n}
$$

such that $\left.U\left(|\psi\rangle \otimes|0\rangle^{0_{n}}\right)=|\psi\rangle \otimes|\psi\rangle \otimes 10\right\rangle^{\otimes n-m}$ For all $|\psi\rangle \in \mathbb{C}^{m}$.
Proof: There colt be, because

$$
|\psi\rangle \otimes|0\rangle \mapsto|\psi\rangle \otimes|\psi\rangle \otimes|0\rangle^{\otimes n-m}
$$

is not linear!

Sol we can only hope to "completely understand" states that we know how to prepare.
III. Distinguishing states, redux

Instead at defernining $|\psi\rangle$ completely, we might be happy to have a procedure to distinguish it from all other states $|\varphi\rangle$ (so long as $|\varphi\rangle \neq e^{i \theta}|\psi\rangle$ for some $\theta \in \mathbb{R}$).
How might we go about this?
Basic ides from last time: "prepare" measuremet

$$
M_{0}=|\psi\rangle\langle\psi|, \quad M_{1}=I-|\psi\rangle\langle\psi| .
$$

If this measurement of $|\varphi\rangle$ ever takes outcome 1 , we know $|\varphi\rangle$ is not equal to 14\rangle This procedure works, but $M_{\text {any issues }}$ ian only get aroid all of

1. Maybe $|\varphi\rangle=a|\psi\rangle+b|v\rangle,\left(|v|^{2}+|s|^{2}=1\right)$ where $\langle t \mid v\rangle=0$ and $|b|^{2}=\frac{1}{2 k}$. Would expect to hove to perform the measurement experiment 2^{k} times before we see $|\varphi\rangle$ isn't $|\psi\rangle$.
2. Just as before: need to have may copies of $|\varphi\rangle$.
3. How do we "prepare the measurement" $|\psi\rangle\langle\psi|$? Would suffices to have a $v_{a y}$ to prepare $|\psi\rangle$, re. 9 frastormation that takes $|0\rangle=10 \cdots 0\rangle$ to $|\psi\rangle$. Ca we do better?

$$
\begin{aligned}
& \mid F U\left(\mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \text { does } U|0\rangle=1 \psi\right\rangle \text {, fin } \\
& |\psi\rangle\langle\psi \mid \varphi\rangle=U|\psi\rangle\langle\psi| U^{t}|\varphi\rangle=|0\rangle\langle 0| U^{t}|\varphi\rangle
\end{aligned}
$$

IV. Some good news: Deutsch-Sozsy algorithm

ENOUGH OF THE WARNINGS!
WHAT ARE QUANTUM STATES GOOD FOE?
Dual to the moral that a quantum state stores exponentially many classical probabilities ${ }^{(*)}$ we have the philosophy:

$$
\begin{array}{r}
\text { ENTANGLEMENT } \\
\text { A RESOURCE }
\end{array}
$$

(*): This does NOT mean we con rikably ste an exponential amount of classical information in a liver * quits (Holevo bound)

Separable us. Entangled states
Given a composite quantum system

$$
\not F_{A B}=B H_{A} \otimes H_{B}
$$

we say a state is separable if it's of the form

$$
\left|\varphi_{A}\right\rangle \otimes\left|\varphi_{B}\right\rangle
$$

For some $\left.\int \varphi_{A}\right\rangle \in \mathscr{A}_{A},\left|\varphi_{B}\right\rangle \in \psi_{B}$. $|F| \varphi\rangle \in \mathcal{H}_{A B}$ is not separable, it is entangled.

Deutsch's Problem
Input: a black box Function

$$
F:\{0,1\}^{n} \rightarrow\{0,1\}
$$

which is promised to be either:
i) Constant, or
ii) balanced, meaning $\# F^{-1}(0)=\# F^{-1}(1)$.

Problem: Decide wether f is constant or balanced. Classically, requires $2^{n-1}+1$ evaluations of F.

If we have access to "quatum black box function" For F, we can solve the problem in constant liven?

$$
\begin{aligned}
& U_{f}:\left(\mathbb{C}^{2}\right)^{\theta n} \otimes\left(\mathbb{C}^{2}\right)^{\otimes n} \rightarrow\left(\mathbb{C}^{2}\right)^{\theta n} \otimes\left(\mathbb{C}^{2}\right)^{\otimes n} \\
& \left.|x\rangle \otimes \underbrace{|y\rangle}_{x} \longmapsto|x\rangle \otimes\right|_{\underset{\sim}{\mid}} ^{\otimes} F(x)\rangle \\
& \text { golem addition } \\
& \text { of bit strings } \\
& \text { This flips y's That } \\
& U_{F}^{-1}=U_{F} \\
& \text { (qu) }-x \text { if } f(x)=1 \text { or } \\
& \text { does rotting or } f(x)=0 \text {. }
\end{aligned}
$$

Details: (Nielser-(huag)

Algorithm: Deutsch-Jozsa

Inputs: (1) A black box U_{f} which performs the transformation $|x\rangle|y\rangle \rightarrow|x\rangle|y \oplus f(x)\rangle$, for $x \in\left\{0, \ldots, 2^{n}-1\right\}$ and $f(x) \in\{0,1\}$. It is promised that $f(x)$ is either constant for all values of x, or else $f(x)$ is balanced,

Outputs: 0 if and only if f is constant.
Runtime: One evaluation of U_{f}. Always succeeds.

Procedure:

1. $\quad|0\rangle^{\otimes n}|1\rangle$ entagled state
2. $\rightarrow \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}|x\rangle\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]$
create superposition using Hadamard gates
3. $\rightarrow \sum_{x}(-1)^{f(x)}|x\rangle\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]$
calculate function f using U_{f}
4. $\rightarrow \sum_{z} \sum_{x} \frac{(-1)^{x \cdot z+f(x)}|z\rangle}{\sqrt{2^{n}}}\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \quad$ perform Hadamard transform
5. $\rightarrow z$
measure to obtain final output z

Caveats:

1. Contrive α problem
2. Deutsch's problem can be efficiently solved with high probability on of classical probabilistic Computer (meaning the algorithm can flip coins) 3. Apples and oranges: "Black box' us. "quatum black box"
