Meeting 6.1.: Classical warm ups to quantum computing
I. Probabilistic classical computing: $B P D$ and $M A$
II. Reversible classical computing

Next time: quantum circuits, $B Q P$ and $Q M A$

Axioms of quantum mechanics lead to important problems it we want to use quantum mechanical systems to build a computer, even in the ideal case f a noise-less system:

1. The classical information extracted via measurement is a probability distribution. How can we formalize complexity theory aroind this?
2. If we wat to use a Hilbert space of Solve system as a "quantum memory register"; then (quantum) transformations must be unitary, hence, on particular, invertible/ reversible. Is reversible computation Feasible?

Goal today: answer these questions in classical warm-up cases.

The classical analogs won lt address all of the issues in the quantum case. Egg. quantum states are not "just" classical probability distributions, and Unitary group $U(n)$ is Uncountable infinite.

Also important later: non-idealized quatum computing. Need a theory of quantum error correction and fault tolerance.
I. Probabilistic classical computing

Informally: a classical probabilistic algorithm e is any algorithm that is allowed access to cain flips, or, equivalutly, random bit strings.
Two equivalat whys to make this more formal:

1. Extad the definition of Turing machine so the transition function can, in addition to usang the machine's internal state and read of the memory, toss a fair coin.
2. "Resolve" a non-deterministic Turing nachine by Flipping a coin to decide how to branch.

Remarks:

1. It deesn It matter so much if the coin is fair, but if p (heads) $\neq 1 / 2$, it should at least be a reasonable number....
2. Coin tosses are always independent. So our algorithen could do all of them at the beginning. Equivalent to choosing a (uniformly) random bit string, ad uses the bits one by one as needed.
3. Access to coin tosses does not change "computable." It might chase "eFtucietly computable", thus violation extended Clurch-Turing thesis.
4. Flipping a coin counts as one time step.

A probobailistle algorithm / Turing machine for a counting problem induces, for any input $x, 1$ probolity distribution an $\{0,1\}^{*}$.
For a decision problem, each input x yields a probability distribution on $\{0,1\}=\left\{Y_{e s}, N_{0}\right\}$.

Informally: A decision problem should be considered efficith probabilistically solvable if thee's a poly. time Turing machine that get's the correct answer with high probability.

Fix a constant $O<\varepsilon<1 / 2$. A decision problem L is in $\operatorname{BPP}_{\varepsilon}$ ("bounded-ecros probabilistic polynomin) time") if there exists a PTM T and a polynomial $p(|x|)$ such that when input x_{1}, T terminates in at most $p(|x|)$ steps, and:
(i) if $L(x)=$ Yes, then T answers $Y_{\text {es }} w /$ prob $\geq 1-\varepsilon>1 / 2$.
(rit) if $L(x)=N_{0}$, then T answers $N_{0} w /$ prob $\geq 1-\varepsilon>1 / 2$.
So, ε is probability of a wrong answer.

Fact: For any $0<\varepsilon<\varepsilon^{\prime}<1 / 2$,

$$
B P P_{\varepsilon}=B P P_{\varepsilon^{\prime}} .
$$

Why? "Amplification of probability""
$B P P_{\varepsilon} \subseteq B P P_{\varepsilon}$, obvious from definition
$B P P_{\varepsilon} \geq B P P_{\varepsilon}$: repent (enough times) and use majority cull.
Take-sway: DeFoe $B P P=B P P_{1 / 3}$
Equivalat formulation: $B P P$ is all decision problems L decidable By an NP TM such that at most 1/3 of the branclos report the wrong answer.

Variats: $R P, P P$
RP: same as BPP, except if the answer is Mos, the PTM always reports the correct answer.
PP: what we git if we set $\varepsilon=1 / 2$.
$B P P_{0}=P$. (But beware of ZPP.)

Example: Primality testing is in BPP via Miller-Raben test.
Input: natural number N (in binary)
Question: Is N prime?

In Fact, it was shown to be in P

Decondomization: It's expected good condon number genemtors exist, honce $B P P=P$.

Merlin-Arthur: probatailistic analog of $N P$.
Has same defintion as before, except we use a BPP Turing machine to decide when a witness is beliouable. Name "Merlia-Arthur" is supposed to invoke a "game". Mult:-round (but constant) games generalize NP (or MA) to polynomial heocorchy.
II. Reversible classical computing

Classically 1 interested in computing Boolean functions

$$
f:\{0,1\}^{m} \rightarrow\{0,1\}^{n}
$$

Of course these are net all bijection. Is there a way to encode f inside" of a büection?
Even better, can we do this "locally" and "cniformly"?
Fest: CSAT.
rnstaxe: Boolean circuit C
Question: Is C satisfiable?

Planar Boolean circuit is somethes like this:
Drown $5 /$ ant $P_{\text {crossings }}^{\text {mem }}$ of wite
C :
 $C(0,1,1,0,1)=1$, so C is satisfiable.

If we have crossings, can get cid w/ a swap:

CSAT is $N P$-complete.
(con reduce from SAT.)
Size of a circuit is O(I gates.).
Is there some NA-complete anrlog of CSAT for "reversible circuits?"

Fix a gate set \&, which a set of Liectionc

$$
g:\{011\}^{n} \rightarrow\{0,1\}^{n}
$$

where n may vary with the gate.
We con wire gates from \&f to build planer revers de circuits.

$$
q ; \mathcal{L}
$$

$$
R:\{0,1\}^{5} \rightarrow\{0,1\}^{5} .
$$

Q:Con we find an NP-complete problem For circuils with gate set \&S? Call it RSAT (LJ) ...
A: Deperds an Z.
Why is this unclea?
Not, we can't Fix $y \in\{0,1\}^{n}$ and asle it thare evists $x \in\{0,1\}^{n}$ such that $R(x)=y$?
Why not? Becacs the a suor is slungs Yes!

Let $\mathscr{H}=\operatorname{Sym}\left(\{0,1\}^{3}\right)$, and defre RSAT (\otimes) as follows:
Input: Reversible circut R of width $2 k$
Quectisn: Dees thre exst $x, y \in\{0,1\} k$ such that

$$
R(x, \underbrace{0, \ldots, 0}_{k})=(y, \underbrace{0, \ldots, 0}_{k}) ?
$$

Clom: This is NP-complete.

