Meeting 6.2 T. RSAT	: Reversible	Computing	and quantum	circuits
I. Quantum	circuits	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·
Next time:	Solovay - Kit	aev?	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·		· · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·		· · · · · · · · · · ·		· · · · · · · · · · · · · · · · · ·
· ·		· · · · · · · · · · · ·		. .
. .		· · · · · · · · · · ·		· ·
			. .	

I. RSAT Last time: 9 (Boolean) gate set & is a set of bijections $\{0,1\}^{k} \rightarrow \{0,1\}^{k}$ (K Varieble) A planar, reversible Boolean circuit R is a diagram like +6,1 94 R encodes a function R: {0,1}" -> {0,1}" $\left| \left(\begin{array}{c} \frac{1}{3} \\ \frac{1}{3} \end{array} \right) \right|_{q_{i}} \in \mathcal{L}$ The circuit is q 9, 3, 3, 1 171 11 11 15 "planar &- Factorization of this function. depth: 3

Note: every Boolen Function (not necessarily reversible)
$f: \{0,1\}^m \longrightarrow \{0,1\}^n \xrightarrow{\times} \{0,1\}^n$
can be built out of AND, OR, ad NOT, FANOUT
{AND, DR, NOT} is a Universal set of logic gastes.
If we want to Find interesting computational problems for
reversible circuits, & better to sufficiently rich."
· · · · · · · · · · · · · · · · · · ·
Lots of viggle
Lots of viggle room!

· ·	•	(-) (`	Je		• •	•	~	~	•	•	•		, j -	•	1		2		1 <u>}</u>	k			7		/ 1 > (2 1	Ðı) }		•	•	· ·	•	•	· · ·	•	• •	· · ·	•
• •	•	C	as	0 0	عاد	~ 4	ك لم	0		~1	0					С	, ,	כ	\ \	0 0	Ð		 0 0	.(501	hr_2) e .	J		9) - 1	0 0				
		• •		• •					• •		•	•		•		• •	0				•			0	• •	•					•									
• •	•	• •	•			• •	•	•	• •	•		•	• •	•		• •	•	•	•	• •		•	• •	•	• •		•		•	• •	•		• •	•		• •	•			•
																																	• •							
• •									• •				• •			• •				• •													• •			• •				
• •		• •				• •			• •				• •			• •				• •			• •		• •					• •			• •			• •		•		
• •								•																					•					•						
• •		• •							• •											• •													• •					•		
• •		• •		• •		• •			• •				• •			• •				• •			• •		• •					• •			• •			• •				
• •		• •				• •			• •				• •			• •				• •			• •		• •		•			• •			• •			•		•		
• •		• •		• •		• •			• •			•	• •			• •				• •			• •		• •					• •			• •			• •		•		
																																						• •		
• •		• •							• •											• •													• •					• •		
• •		• •				• •			• •				• •							• •			• •		• •					• •			• •					• •		
• •		• •				• •			• •				• •			• •			•	• •			• •		• •					• •			• •			• •				
• •				• •		• •			• •				• •			•				• •			• •		• •					• •			• •			•				

st for Fun: Since t is Conservature 156

Figure 3.14. A simple billiard ball computer, with three input bits and three output bits, shown entering on the left and leaving on the right, respectively. The presence or absence of a billiard ball indicates a 1 or a 0, respectively. Empty circles illustrate potential paths due to collisions. This particular computer implements the Fredkin classifier reversible logic gate, discussed in the text.

we can implement it with billiard balls

Figure 3.16. Fredkin gate configured to perform the elementary gates AND (left), NOT (middle), and a primitive routing function, the CROSSOVER (right). The middle gate also serves to perform the FANOUT operation, since it produces two copies of x at the output. Note that each of these configurations requires the use of extra 'ancilla' bits prepared in standard states – for example, the 0 input on the first line of the AND gate – and in general the output contains 'garbage' not needed for the remainder of the computation.

T

T

If we allow extra "ancilla" toits, can encode AND, OR, NOT:

AND (XIT)

xy

 $\bar{x}y$

x

ee

ine

ply

tive

()

r

CROJSOUER,

SWAP

Recall: De Morgan XUY = - (-X1-Y) NOT NOT [No,]

Since NOT and SWAP are reversible, might as well include them in 2 For your $\mathcal{L} = \{F, NOT, SWAP\}$ $(1^{+} \longrightarrow (1^{+} \otimes 1^{+})) \otimes (1^{+} \otimes 1^{+})$ \times is a \longrightarrow in \times in \times in \otimes in \times in is not linear!

We can "dilate" every Boolean circuit to a revusible Circuit, by replacing every AND with a Fredhin + ancillae in O state: dilate AND AND FINOT

RSAT (E), Variant 1:	&={F, s~A	r, Not}.
Instance:	reversible (planar) & - cir	cuit R, with inpu	4
· · · · · · · · · · · · · · ·	divided into donta cegiste	r of width d	
	and ancilla register of width(R)=4, and all anc	illae set to D.	· · · · · · · · ·
Problem:	Does there exist $x \in \{0\}$ the first output bit of	R(X, 0,, 0) is	J?
Lemma: RS	AT(2) is NP=complete.	∽-J	
<u>Proof</u> : Reduc	e from CSAT Using dil	ation os on previous	poge. D

If we includ a somewhat	le COPY in El less contrived Varia	, we can build t of RSAT.
Here COPY	ί ς	· · · · · · · · · · · · · · · · · · ·
	$ \begin{array}{c} X \oplus Y \\ \downarrow \\ \int C D P Y \\ \downarrow \\ \downarrow$	COPT is "reversible copy" not "cone" or "Fan out" x x [] [Tayout]
$(1F \times = 0, C)$	OPY Copies y to	×.) ×
25 = {	F, SWAP, NOT, C	ͻϼγξ

RSAT (ED, Voriant 2:
Instance:	H-circuit R with vith (R) = 2n, with input
· · · · · · · · · · · ·	divided into data and ancillae registers both
	of width n.
Problem	Do there exist xig E {0,1}" such that
· · · · · · · · · ·	R(x, 0,, 0) = (y, 0,, 0)
· · · · · · · · · · ·	ancillae ancillae
· · · · · · · · · · ·	
Lening.	(his problem is NP-complete.
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Prof: Key iden is Uncomputation, which is also useful in quantum computation ad in complexity cesults in topology. See "Computational complexity and S-manifolds and Zombies by Kuperberg-S.) leduce from First vorient. Three coses Not(ril) XI Xn 91, 91 Yi Yn bi big I... I ... I of R.I Three coses Not(ril) XI Xn 91, 91 I... I I R and apply 9 NOT XI X n ak 9k+1 X, X, n 9k Case :: 1= k+1 Mne ancilla

Case it 47 K+1 Inh, DK NOT uncompute Copy and pad v/ new ancillae XI X 91 9K 9k X X N 9k 9k129 Several more Padding Dc://g (cgister

Case jii n 4 Ktl COPI-Con Xn 9, X۱ Nor 1 Nor' and pro COPT ----|-...|···` . ~ ._ - . $\mathbf{X}_{i} = \mathbf{X}_{i}$ 91 · X New INAVT The copying at the end is to a parsimonious rediction. ensure

W4-1 U1	ncomputation is releva	it to quartures computing.	•
We m.	ight work hand to p	prepare quarture state (7)	•
So w	e can do Usotul fli	rgs with it.	•
· · · · · · · · · ·			•
[v]	~[~~]	Potertiolly - Image Cise matative 1	•
	\cup \Box \Box \Box	Output might Lo	•
	_ junk?	Critorgled w/ 41	•
	2^{k}	junk 1	•
	$z_{i} c_{1}(1)$ $i \ge 0$		•
			•
			•

Interesting question:
Given jote set &, whyt's the
complexity of RSAT (8)?
le: "How powerful is 2?"
\sim
Quess: Either its in P
or its NP-complete?
(See Schaeter dichotomy theorem)

<u>II. (</u>	Quant	ŪM	<u>(</u> :	rcuit <u>e</u>		· · ·	· · ·	· · · · ·	· · · ·	· · ·	· · · ·	· · · ·	· ·	· ·	· ·	· · · ·
Cal		Cu	<i>it</i> er	γ	frasti	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>†</i> !e-1	· · · · ·	· · · ·	· · ·	· · ·	· · ·	· ·	· ·	· ·	· · · ·
· · · · · · ·	J):		©	⊗ (° ~`		♪ ((<u>)</u> ~ 8) (· · · ·	· ·	· ·	· · ·	· · · ·
· · · · · · · · ·				k		· · · ·	· · ·	· · · · ·	· · · ·	· · · ·	· · ·	· · · ·	· ·	· ·	• •	· · · ·
Any	n-ar set	7 ¥	gua,	9conte	ן <i>ם</i> זאן קאי	tes		Cylle	d d	2 2	nte	7 5 5 5	J.	· ·	· ·	· · · ·
· · · · / · · · · · · · · ·		· · · · ·	· · · · ·	+ • • • • • • • • • • • • • • • • • • •		· · · ·	· · ·	· · · · ·	· · ·	∧ 	· · · ·	· · ·	· ·	• •	· ·	· · · ·
· · · · · · ·	· · · · ·			· · · · ·	· · · · ·	· · ·	· · ·	· · · · ·	· · ·	· · ·	· · ·	· · ·	• •	• •	• •	· · ·
· · · · · · ·	· · · · ·	· · · · ·	· · · · ·				• • •	· · · ·	• • •	• • •	· · ·	• • •	• •	• •	• •	· · ·
													0 0	• •	•	

Any classical reversible	gale a		be	line		· · ·	• •	· · ·	• •
(F a: 50,13 K ->	Son k	· · · ·				· · ·	• •	· · ·	
(×₁,,× _k)⊢	⇒ (Yı Yk)			· · · · · ·		· · ·	• •	· · ·	
The						• • •	• •	• • •	• •
(~~~)	17W7	· · · ·	· · ·	· · · · · ·	· · · ·	• • •	• •	· · ·	• •
		· · · ·	· · ·	· · · · · ·	· · · · ·	· · ·	• •	· · ·	• •
<u> </u>		· · · ·					• •	••••	• •
· · · · · · · · · · · · · · · · · · ·			• • •			• • •			
The quarter gute g	pernetes	fle	Com	putation	nal 6	C12.3	· · ·	· · · ·	· ·
of ((1)) Take-avo	guatram	Cr CV	its a	include	c (-15 ic	ମ	• •	· · ·	• •

2. Line	CNOT of	(9Kg COPY) CNOT			
	CNOT -	<pre> { 0,13 ~ -> 0 0 0 1 +> 1 0 </pre>	{01} 00 01 11	<td> </td>	
<td></td> <td></td> <td>10 1×c=y></td> <td>/y> 1</td> <td> </td>			10 1×c=y>	/y> 1	
	C NOT X7 (47		[*) [*]	7 r>	

3. Single qubit gates pir untage portos on Office
Hadamand LI - 1 / 1 1) Lie group U(d).
$\frac{1}{\sqrt{2}} \left(1 - \frac{1}{2} \right)$
\sim
Physe gostes: 11 [iv] / 10]
$\left[\underbrace{e}_{\mathbf{r}} \right]^{2} \left(\begin{array}{c} 0 \\ e^{i \Psi} \end{array} \right) \times /$
A 9/0>+5/12 1-> 9/0>+, ile,
$ x\rangle$
· · · · · · · · · · · · · · · · · · ·

A quatur circuit over & is a circuit whose gates						
que elemits of Z.						
Just as for classical reversible circuits, quarture						
circuits have a width and a depth.						
E.g. C implements a unitary						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$C: \begin{array}{c} X \\ \uparrow \end{array} \\ \uparrow \end{array} \\ \begin{array}{c} (X \otimes CNOT) \circ (CNOT \otimes e^{i\theta}) \\ \uparrow \end{array}$						
$\left[\begin{array}{c} c N o T \\ t \end{array}\right] \left[\begin{array}{c} e^{i \varphi} \\ t \end{array}\right] 1^{2}$						
depth: 2 width: 3						

Gate set & is precisely if (For a large enough)
every unitary $U: (\mathbb{C}^2)^{\otimes n} \rightarrow (\mathbb{C}^2)^{\otimes n}$ can be expressed
as a 21-circuit. (Every UEU(2n) can be factured as a product of elements of 21.)
U(2) + CNOT is Universal quatum gate set.
(n fact: phase gates + H + CNOT is universal.
"Precisely universal" is overkill!
Why? Quatum computers are protabilistic and
states that are too close can not be feasibly
distingvished.

A better definition (but still orguably overkill...) A grie 21 is (plann) quatum universal if for all 4 lage enough, elements of & in $\mathcal{U}(\mathcal{L}^{2}\otimes\cdots\otimes\mathcal{L}^{2})\cong\mathcal{U}(\mathcal{L}^{n})$ (ie, given gED that is binny, we get und differt Unitaries of the form 10(2)@i & g & 10(C2)m-2-i) genurate (as a monoid) à derse subset (For all 270 For every UCU(25), we can find a Sincevit U' s.t. IV-U'II 4 E.)

Let $f:$ be a f precision p^{m}	$\{0,1\}^{n} = Font:on.$ ε $\{(x), z\}$	$= \frac{1}{20}, 13^{m}$ $A C:CCUTF$ $(0 \leq \epsilon \leq 1/2)$ $\int \bigcup (x, 0^{N})$	U <u>comput</u> if for any -n>1 2 1-	 F t= × ε {0₁/}" ε.
· · · · · · · · · · · · ·	· · · · · · · · ·	00	· · · · · · · · · · · · ·	
(V 4-5	width N)	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·