Meeting 6.2: Reversible computing ad quantum circuits
I. RSAT
II. Quantum circuits

Next time: Solovay-Kitaeu?
I. RSAT

Last time: a (Boolean) gate set \mathcal{H} is a set of bijections

$$
\{0,1\}^{k} \rightarrow\{0,1\}^{k} \quad(k \text { variable })
$$

A planar, reversible Boolean circuit R is a diagram like this:

$; ; \mathcal{Z}$
R encodes a function.

$$
R:\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

The circuit is a "planar \&f-factorization" $d e p t h: 3$ of this function.

Note: every Boolean Function (not necessarily (eversible)

$$
f:\{0,1\}^{m} \rightarrow\{0,1\}^{n}
$$

can be built out of AND, OR, and NOT, FANOUT $\{A N D, O R, N O T\}$ is a universal set of logic gates.

If we want to find interesting computational problems for reversible circuits, \mathcal{H} better bo "sufficiently rich."

$$
\hat{\}}
$$

Lots of Niggle room!

Example:
$\mathscr{L}=\{F\}$, where F is the Fredkin gate:

Inputs			Outputs		
a	b	c	a^{\prime}	b^{\prime}	c^{\prime}
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	1	1	0
1	1	1	1	1	1

Figure 3.15. Fredkin gate truth table and circuit representation. The bits a and b are swapped if the control bit c is set, and otherwise are left alone.

$$
\text { Fredkin }=\text { "Controlled SwAP" }
$$

Given ay $g:\{0,1\}^{k} \rightarrow\{0,1\}^{k}$ cas alwas build "C-g" or "Controlled-g".

Just for fun: since F is "conservative"

we can implement it with billiard balls?

If we allow extra "ancilla" bits, can encode AND, OR, NOT:

Avcula

Recall: De Morgan $x \cup y=\neg(\neg x \wedge \neg y)$

Since NOT ad SWAP are reversible, might as well include them in \&f for now

$$
\begin{aligned}
& \mathcal{E}=\left\{F_{1} \text { NOT, SWAP }\right\} \\
& \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{2} \\
& x \mapsto x \otimes x
\end{aligned}
$$

is not liner!

We can "dilate" every Boolean circuit to a revosible circuit, by replying every AND with a Fredkin + ancilla in 0 state:

RSAT(L), variant $1:$

$$
\mathscr{E}=\{F, \text { SWAt, NOT }\}
$$

Instance: reversible (plan, ar) \mathcal{E}-circuit R, with input divided into "data register" of width d and "ancilla register" of width $n-d$, where width $(R)=n$, and all ancilla set to 0 .

Problem: Does there exist $x \in\{0,1\}^{d}$ such that the first output bit of $R(x, \underbrace{0, \ldots, 0}_{n-2})$ is 1 ?
Lemma: $\operatorname{RSA}(\mathscr{S})$ is $N P$-complete.
Proof: Reduce from CSAT using dilation as on previous pere. D

If we include COPY in \mathcal{H}, we can build a somewhat less contrived variant of RSAT.
Here copy is

COPY is reversible copy not "clan" or "Fan out"

(If $x=0$, Copy copies y to x)

$$
\mathcal{E}=\{F, \text { SWAP, NOT, COPY\} }
$$

RSAT (\#) , variant α :
Instance: \mathscr{H}-circuit R with with $(R)=2 n$, with input divided into data and ancillse registers both of width n.
Problem: Do there exist $x, y \in\{0,1\}^{n}$ such that $R(x, \underbrace{0, \ldots, 0}_{\text {ancillee }})=(\underbrace{y, 0,0}_{\text {ancillse }})$

Levine: This problems is NP-complete.

Proof: Key ides is "uncomputation", which is also useful in quantum computation ad in complexity results in topology. (See "Computational complexity and ζ-manifolds and zombies" by Kuperberg-S.)
Reduce from first variant Three cases

Case i: $n=k+1$

Case it $\quad n>k+1$

Case iii $\quad n<k+1$

The copying at the end is to ensure a parsimonious reduction.

Why uncomputation is celevent to quatun computin: We might work hand to prepore quatum stite $|x\rangle$ so we can do usotul things with it.

Interesting question:
Given gate set \mathscr{I}_{1} what's the complexity of RSAT (\&)?
le,: "How powerful is \&?"
Guess Either its in P
or its NP-complete?
(See Schaefer dichotomy the ore - i.)
II. Quantum Circuits

Call a unitary trasformatien

$$
U: \frac{\mathbb{C}^{2} \otimes-\otimes \mathbb{C}^{2}}{k} \rightarrow \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}
$$

a K-ary quantum gate.
Any set of of quatungates is called a guiding sate set.

Examples::

1. Any classical reversible gate g can be "linerizd" If $g:\{0,1\}^{k} \rightarrow\{0,1\}^{k}$

$$
\left(x_{1}, \ldots, x_{k}\right) \mapsto\left(y_{1}, \ldots y_{k}\right)
$$

Then

The qualm gate g permutes the computational basis of $\left(\mathbb{C}^{2}\right)^{\otimes k}$.

Take-aua: quantum circuits include classical reversible circuits.
2. CNOT (9Ka COPY)

Linevizaten of CNOT
CNOT : $\{0,1\}^{2} \rightarrow\{0,1\}^{2}$
$\begin{array}{lll}00 \\ 0 & 0 \\ 01 \\ 10 & 0 & 0 \\ 11 & & 11 \\ 1 & 10\end{array}$

3. Siagle qubit gates, ustay parators on T^{2} if

Hadamad $H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right) \quad$ Lie group $U(d)$.

Phase jates:

$$
\begin{aligned}
& \frac{p}{e^{i \varphi}}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \varphi}
\end{array}\right)|x\rangle \\
& |x\rangle \\
& a|0\rangle+b|1\rangle \rightarrow 9|0\rangle+e^{i \varphi} b|1\rangle .
\end{aligned}
$$

A quatum circuit over \mathcal{D} is a circuit whose gates ae elemis of Z.
Just as for classical reversible circuits, quantum circuits have a width ad a depth.
Egg.
C implants a unitary

on $\mathbb{C}^{+} \otimes \mathbb{C}^{+} \otimes \mathbb{C}^{2}$;

$$
\left(X \otimes(N O T) \circ\left(C N O T \otimes e^{i \varphi}\right)\right.
$$

depth: 2 width: 3

Gate set \mathcal{D} is precivelyal if (for a large enough..) every unitary $\left.U: \mathbb{C}^{2}\right)^{\otimes n} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes n}$ can be exposed as a 2 -circuit. (Every $U \in U\left(2^{n}\right)$ can be factored as a product of elemets of 2S1.)
$U(2)+$ CNOT is universal quatum gate set.
to fat: phase gates $+H+$ CNOT is universal.
"Precisely univess" is overkill!
Why? Quatum computers ore probabilistic and states that are too close can not Le feasibly distinguished.

A better definition (but still aguably ovenkill..)
A grte $\&$ is (ploair) q vatum universa) if for all " lage enough, élemets of H^{\prime} in

$$
U(\underbrace{\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}}_{n}) \cong U\left(2^{n}\right)
$$

(ie.) givn $g \in \mathscr{D}$ that is binoy, we get n-1 diktuat Unitaris of the form $\left\|_{\left(\mathbb{C}^{2}\right) \otimes i} \otimes g \otimes\right\|_{\left.\left(\mathbb{C}^{2}\right)^{n-2-i}\right)}$ genvate (as a monoid) a derse sulset (For all $\varepsilon>0$ for evert $\cup \subset \cup\left(2^{h}\right)$, we can fid $\alpha \quad \mathscr{S}$-circuit U^{\prime} s.t. $\left\|U-U^{\prime}\right\|<\varepsilon$.)

Let

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}
$$

be a function A circuit U computios F to precision $\varepsilon \quad(0 \leqslant \varepsilon<1 / 2)$ if for any $x \in\{0,1\}^{n}$

$$
\sum_{z=0}^{2^{m}-1}\left|\left\langle F(x),\left.z\right|_{0 \ldots 0} \cup \mid x, 0^{N-n}\right\rangle\right| \geq 1-\varepsilon
$$

(U has width N)

