Meeting 7.1: $B Q P$ and $Q M A$
I. $B Q P$, gate (independence, and the Solovay-Kitaer theorem
II. QMA and local Hamiltonian problem

ROUGH PLAN FOR REMAINDER OF SEMESTER
Next time: Simon's and Shor's algorithms
Week 8: Quantum error correction, stabilizer formalised, ad $\mathbb{Z} / \alpha$ homology
Weeks 9+: topological quatum computation and TQFT. Time remaining: Khania homology? student toll es
I. BQP, gate (in)dependence, and the Solovay-Kitaer theorem Last time, 1 ended br Flashing this definition (taken from the textbook of Kiteer et al.):

Let

$$
f:\{0,1\}^{n} \rightarrow\{0, r\}^{m}
$$

be a function. $A$ circuit $U$ "computes" $F$ to precision $\varepsilon \quad(0 \leq \varepsilon<1 / \alpha)$ if for any $x \in\{0,1\}^{n}$

$$
\left.\left.\sum_{z=0}^{2^{N-m}}\right|^{-1}\langle F(x), z| \cup\left|x, 0^{N-n}\right\rangle\right|_{\text {forgot lost the }} ^{2} \geq 1-\varepsilon
$$

$(U$ has width $N)$

Why is this a good definition?

For convenience, assume $m_{2}=1$.

Do measurement

$$
\left.M_{0}=|0\rangle\langle 0| \otimes\left|\partial_{\left(\mathbb{C}^{2}\right)^{N-1}} M_{1}=\right| 1\right\rangle\langle 1| \otimes \mid \partial_{\left(\mathbb{C}^{2}\right)^{\otimes N-1}} \text { on }
$$

$U\left|x, 0^{N-n}\right\rangle$. Probibility of correct outcone $f(x)$ is

$$
\left\langle x, 0^{N-n}\right| U^{t} \mu_{f(x)}^{t} M_{f(x)} U\left|x, 0^{N-n}\right\rangle
$$

Write

$$
U(x, 0)=|f(x)\rangle \otimes\left(\sum_{z} c_{z}(z)\right)+|F(x)\rangle \otimes\left(\sum_{z} \partial_{z}(z\rangle\right)
$$

where $\sum_{z}\left|c_{z}\right|^{2}+\left|\partial_{z}\right|^{2}=1$. Thon

$$
\begin{aligned}
& M_{f(x)} \cup^{t}|x, 0\rangle=|f(x)\rangle \otimes \sum c_{z}|z\rangle, \text { so } \\
& \left.P(\text { outcone } f(x))=\sum_{z=0}^{2^{N-m}}|\langle f(x), z| \cup| x, 0^{N-n}\right\rangle\left.\right|^{2} \geq 1-\varepsilon
\end{aligned}
$$

Intuition:
$U$ computes $f$ if for all $x$, $U\left|x, O^{N-n}\right\rangle$ is "close" to a state of the form $|F(x)\rangle \otimes \mid$ junk $\rangle$.

Here's another fair definition:
$\cup$ computes $f$ to precision $\varepsilon$ if for any $x \in\{0,1\}^{n}$

$$
\left\langle F(x), x, 0^{N-m-n}\right| \cup\left|x, O^{N-n}\right\rangle \geq 1-\varepsilon
$$

Claim: Two definitions acre equivalent. ( $\varepsilon^{\prime}$ 's distr, but by
Proof: For convenience, assume $m=1$. (controlled amount)
$(1) \Rightarrow(2)$ : Use uncomputation. If $U$ satisfies

$$
\left.\sum_{z=0}^{2^{N-m}}|\langle f(x), z| \cup| x, 0^{N-n}\right\rangle\left.\right|^{2} \geq 1-\varepsilon
$$

then build circuit $V$ as follows:

$(\alpha) \Rightarrow(1)$ : immedinte from defritions.

What should be the correct definition of what it means for a quantum computer to compute a decision problem

$$
F:\{0,1\}^{*} \longrightarrow\{0,1\}=\left\{N_{0}, Y_{e s}\right\} ?
$$

Issue: now input bit string has variable + unbounded length!
Fix: use a different circuit for every bit string, or at least every different length $n=|x|$.
But careful! Where should these circuits come from?
A classical polynomial time algorithm!

Define $[B Q P(\mathscr{O}, \varepsilon)]$
Fix a quantum universal gate set 2 ad $0<\varepsilon<1 / 2$. A decision problem $f:\{0,1\}^{*} \rightarrow\{0,1\}=\left\{N_{0}, y_{e s}\right\}$ is in $\operatorname{BQP}(2], \varepsilon)$ if there exists a classical), polynomial time algorithm that when input $x \in\{011\}^{*}$, prints a diagram of a quantum circuit ( $w$ / gate set V) $U_{x}$ that Computes $F(x)$ to precision $\varepsilon$.

Dependence on \& and $\varepsilon$ ?
Just as for BP P, we hive

$$
B Q P\left(\mathcal{E}, \varepsilon_{1}\right)=B Q P\left(\mathcal{Y}, \varepsilon_{2}\right)
$$

for all $0<\varepsilon_{1} \subset \varepsilon_{2}<1 / 2$.
For $D_{1}$ have to consider converone properties of dense sulgroups of $U(\alpha)$ and $U(4)$.
Problem: need to convent gates in $\mathcal{L}$, to gates in $\mathscr{E}_{2}$ withat too much overheod. Moreover, the conversion is only AAPROXIMATE.

Theorem A3.1: (Solovay-Kitaev theorem) Let $\mathcal{G}$ be a finite set of elements in $S U(2)$ containing its own inverses, such that $\langle\mathcal{G}\rangle$ is dense in $S U(2)$. Let $\epsilon>0$ be given. Then $\mathcal{G}_{l}$ is an $\epsilon$-net in $S U(2)$ for $l=O\left(\log ^{c}(1 / \epsilon)\right)$, where $c \approx 4$.
In other words, if $\sigma \in S U(\alpha)$, 1 can find

$$
U=G_{1} \sigma_{2} \sigma_{3} \cdots \sigma_{l}, \quad \sigma_{i} \in \mathcal{L}
$$

such that
(Assuming \&i and

$$
\|U-G\|<\varepsilon
$$

where $l=O\left(\log ^{c}(1 / \varepsilon)\right)$.
$\ddot{H}_{2}$ both frith and inverse closed,)
Take-away: it's easy to find a short product of elevens of $\&$ that is $\varepsilon$-close to $\sigma$.
Corollary: $B Q P\left(z_{1}\right)=B Q P\left(z_{2}\right)$

Warning if $\mathcal{H}$ is infinite, $B Q P(E)$ con include uncomputable functions.

Def $B Q P=B Q P(2,1 / 3)$
where $\mathcal{L}$ is whatever Forte, inverse closed, quantum universal gate set you prefer.

Examples of problems in $B Q P$ ?
Factoring!
Given an integer a (in binary), out put its primo factorization.
Note: Factoring is NOT the some as Ms it prime?
${ }^{5}$ aired in $P$.
II. QMA and local Hamiltonion problem

Kitaer's b-ok calls QMA "BQNP"
Theee way malogy:

$$
P: N P: B P P: M A:: B Q P: Q M A
$$

QMA is vert samila to MA, with two addifions:

1. Arthur has a quaturn campouter!
2. Mertin provides Anthor with a cectificate in the Form of a quatum state

Subtlety: it's possible Merlin only ever needs to use a classical bit string.
It would be better to call QMA

$$
{ }^{\prime} Q M Q A{ }^{\prime \prime}
$$

Then there is 1 subset

$$
{ }^{\prime} C M Q A^{\prime}
$$

Unfortunately CMQA is actually called $Q \subset M A$

If's not known if

$$
P \subset P S P A C E!
$$

SPACE
All of these complexity classes are separated by oracles. Erg. exists a decision problem $F$ such that $P^{F} \neq N P^{F}$.
(There also exists an f where $P^{f}=N P^{F}$ )

$I P=P S P A C E$
but separated by a radon oracle?

$$
C_{1}^{F} \stackrel{?}{=} C_{2}^{F} \quad \forall F
$$

Why is $B Q P \subseteq P S P A C E ?$
Gist: we can sufficiently approximate

$$
\langle z| \cup|w\rangle \quad \text { for all }
$$

$z, w \in\{0,1\} N$ and width $N$ circuit $U$.

$$
\begin{aligned}
& \langle z| U|w\rangle= \\
& \sum_{x_{1}, x_{2}, \cdots,-1}\langle z| G_{l}\left|x_{1}\right\rangle\left\langle x_{1}\right| G_{2}\left|x_{2}\right\rangle \cdots\left\langle x_{l-1}\right| G_{l}\left|x_{l}\right\rangle \\
& U=G_{1} G_{2} \cdots \sigma_{l}
\end{aligned}
$$

