I. BQP, gote (in)dependence, and the Solovay-Kitaer theorem Last time, I ended by Flacking this definition (taken from the fextbook of Kitner et al.):
Let $F: \{0,1\}^n \longrightarrow \{0,1\}^m$ be a function. A circuit \bigcup computes F to precision ε $(0 \le \varepsilon \le 1/2)$ if for any $x \in \{0,1\}^n$ $\int_{X-m}^{N-m} \left\{ (F(x)_i \ge \bigcup(x_i, 0^{N-m}) _{T}^2 \ge -\varepsilon) \right\}$
Forost last time
(V has width N)

· · · · · · · · · ·		· · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
\mathbb{V} L	، در	+his	9	g oo d	. .
· · · · · · · · · ·	definit	tion?	 		. .
	Convenience,	٩٢٥٥٩	<i>[</i> , , , , , , , , , , , , , , , , , , ,	÷),	
· · · · · · · · · ·			· · · · · · · ·	· · · · · · · · ·	
· · · · · · · · · ·		· · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·		· · · · · · · ·	· · · · · · · · · ·	· ·
· · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Do measurement
$M_0 = O \langle O \otimes O = M_1 = I \langle I \otimes O = On$
Ulx, ON-n). Probability of correct outcome f(x) is
$\left\langle X_{i}O^{N-n} \middle U^{t}M^{t}M \bigcup \middle X_{i}O^{N-n} \right\rangle$ Wr:te
•
$U[x_10] = f(x)\rangle \otimes \left(\sum_{z} c_{z}(z) \right) + f(x)\rangle \otimes \left(\sum_{z} d_{z}(z) \right)$
where $\sum_{\frac{7}{2}}^{7} c_{\frac{7}{2}} ^{2} + J_{\frac{7}{2}} ^{2} = .$ Then
$M_{f(x)}U(x,0) = [f(x)] \otimes \sum_{n-m} c_{2}/2), s_{0}$
$M_{F(x)} \bigcup I_{X,0} = [F(x)] \otimes \sum_{z \in \mathbb{Z}} (z \mid \mathbb{Z}), s_{0}$ $P(outcome = F(x)) = \sum_{z \in \mathbb{Q}} \left \langle F(x), \mathbb{Z} \mid \bigcup (x, \mathbb{Q}^{N-n}) \right ^{2} \ge 1 - \mathbb{E}.$

Intuition	• • • • • • • • • • • • •		· · · · · · · · · · ·		· · · · · · · · · · · · · · · · ·
0	mputes	F ;F	for o	,(×,	· · · · · · · · · · · · · · · · · ·
	$\langle O^{N-n} \rangle$				
State	of the	Form	/F(x)) ∅	(;4).	· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · ·			· · · · · · · · · · ·		· · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · ·		· · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · ·	· · · · · · · ·		· · · · · · · ·	· · · · · · · · · · · · · · · ·
· · · · · · · · · · · ·			· · · · · · · · · · ·		

Here's another fair definition:
U computes F to precision E if for any XE {0,13"
$\langle F(x), x, 0^{N-n-n} U x, 0^{N-n} \rangle \geq 1-\varepsilon$
Claim: Two definitions are equivalent. (E's dister, but by (ontrolled quownt)
<u>Proof</u> : For convenience, assume m=1.
(1) => (2): Use uncomputation. IF U satisfies
γ^{N-m}
$\sum_{z=0}^{d} \left \left\langle F(x), z \right \left(\left x, 0^{N-n} \right\rangle \right ^2 \right = 1 - \varepsilon.$
then build circuit V as follows:

4 - -()-1 (NOT X~O O X \mathcal{D} N-n (b) => (1): Immediate From definitions.

What should be the correct definition of what it
means for a quature computer to compute a decision problem
F: {0,1]* -> {0,1} = {No, Yes}?
Issue: now input bit string has variable + unbounded length.
Fix: Use a different circuit for every bit string, or
at least every different length n=/x).
But careful! Where should these circuits come From?
\cdot
A classical polynomial time algorithm!

$\underline{D_{e}F'_{n}}$ [BQP(\mathcal{B}, ε)]
Fix a quantum universal gate set 21 and BLEL 1/2.
A decision problem f: {0,1}* -> {0,1} = {No, Yer's is in
BQP(21, 2); F there exists a classical, polynomial time
algorithm that when input XE{011}*, prints a diagram
of a quantum circuit (w/gate set 2) Ux that
of a quantum circuit (u/gate set 2) Ux that Computes F(x) to precision E.
Computes F(X) to precision E.
Computes F(x) to precision E.
Computes F(X) to precision E.

Dependence on Z and E?
Just as For BPP, we have
$BQP(\mathcal{B}, \varepsilon_{1}) = BQP(\mathcal{B}, \varepsilon_{2})$
For all $0 \leq \varepsilon_1 \leq \varepsilon_2 \leq \frac{1}{2}$.
For &, have to consider converse properties of dense subgroups of U(2) and U(4).
of dense subgroups of U(2) and U(4).
Problem: meed to convert gates in 21, to
gates in & without too much overhead.
Moreover, the conversion is only APPROXIMATE.
· · · · · · · · · · · · · · · · · · ·

Theorem A3.1: (Solovay–Kitaev theorem) Let \mathcal{G} be a finite set of elements in S containing its own inverses, such that $\langle \mathcal{G} \rangle$ is dense in $SU(2)$. Let $\epsilon > 0$ be a Then \mathcal{G}_l is an ϵ -net in $SU(2)$ for $l = O(\log^c(1/\epsilon))$, where $c \approx 4$.	
In other words, if GESU(2), I can find	
$U = G_1 G_2 G_2 \cdots G_{\ell} \qquad G_i \in \mathcal{L}$ Such that (Assuring	र्श रूर
Such that (Assuning U-G//CE	with Fourth
where $l = O(\log^{c}(1/\epsilon))$.	oth Fruit. nuese closed,)
Take-away: it's easy to Find a short product	
elevents of 2 that is E-close to G. Corollary: BQP(2) = BQP(2)	

Warning: if & is infinite, BQP(25) Can include un computable Functions Def BQP = BQP(&, 1/3) where & is whatever Finite, inverse closed, quantum universal gate set you prefer.

Examples of problems in BQP?	• •
Factoring!	· ·
Give an integer on (in binary), out put	· ·
its prime Factorization.	• •
Note: Factoring is NOT the some as	· ·
Is it prime?	· ·
Alrendy in P.	· ·
	••••

I. QMA and local Hamiltonian problem
Kitger's book colls QMA "BQNA"
Three way malogy:
P:NP:: BPP:MA:: BQP:QMA
QMA is Very similar to MA, with two gdditions: 1. Arthur has a quature computer!
1. Arthur has a quature computer! 2. Merlin provides Arthur with a certificate in the
1. Arthur has a quature computer!
1. Arthur has a quature computer! 2. Merlin provides Arthur with a certificate in the
1. Arthur has a quature computer! 2. Merlin provides Arthur with a certificate in the

Subtlety: it's possible Merlin only ever needs to use a classical bit string. It would be better to call QMA (QMQA) Then there is 7 subset "CMQA" Unfortunately CMQA is actually called QCMA.

PGPSPACEI All of these complexity Classes one separated Ly Oracles. E.g. excits a decision problem F such that PF + NPF. BPP NP	It's not known it	
Classes are separated by Oracles. E.g. exists a decision problem F such that PF & NPF. BPP MP	PÇPSPACE!	PSPACE
problem F such that BQP MA PF & NPF. BPP NP	All of these complexity	
problem F such that BQP MA PF & NPF. BPP NP	Classes are separated by	
PF = NPF. BPP NP	problem F such that	
	$P^{F} \neq NP^{F}$.	BPPNP
	(Thre also exists on F	
where $P^{+} = NP^{+}$	where $P^{\dagger} = NP^{\dagger}$,	p

IP=PSPACE	
but separated by	9 randours oracle!
$C_{i} \neq \frac{2}{2}$	$\forall f \neq f$
	1 1

Why is BQPSPACE?
Gisti ve can sufficiently approximate
$\langle z U w\rangle$ For all
Z, wE EOIBN and width N crecuit U.
< z (U/w) > =
$\sum_{x_{11}x_{21}-1}^{1} \langle z G_1(x_1) \langle x_1 G_2(x_1) \rangle = \langle x_2 \rangle = \langle x_2 \rangle \langle x_2 \rangle$
$U = G_1 G_2 - G_2$