Meeting 8.1 Some quantum algorithms
I. Simon's problem
II. Reducing factoring to period-Finding
III. Phase estimation ad periad-finding
I. Simon's problem

First, recall Deutsch's problem can be solved in O(I) on quantum computer.

Input: a black box Function

$$
F:\{0,1\}^{n} \longrightarrow\{0,1\}
$$

which is promised to be either:
i) Constant, or
ii) balanced, meaning $\# f^{-1}(0)=\# F^{-1}(1)$.

Problem: Decide wether f is constant or balanced.
Classically, requires $2^{n-1}+1$ evaluations of F.
"Oracle separation" of $B Q P$ and P.

Since BPP is "realistic" classical computer, con we separate RPP and $B Q P$?
Warning: $P \subseteq B P P \subseteq B Q P \subseteq P S P A C E$, and we don't know if $P \neq P S P A C E!$

Is there an ORACLE separation of BPP and $B Q P$?

Simon's problem
Given black box/oracle Function al replace w/ X sit.

$$
F:\{0,1\}^{n} \rightarrow\{0,1\}^{k} \quad(k \geq n-1)
$$

which is promised to satiny

$$
f(x)=f(y) \text { if and only if } x-y \in\{0,5\}
$$

for some $s \in\{0,1\}^{n}$.
Problem: Find s.
Con't be solved in BPP' Even a probabilistic algorithm requires at least $2^{n / 2}$ querist to oracle to Find $x \neq y$ with $f(x)=f(y)$.

Sinon's algerithin
Suppose have usua) "quatum oracle" for F

$$
\begin{aligned}
U_{f}:\left(\mathbb{C}^{2}\right)^{\otimes n} \otimes\left(\mathbb{C}^{2}\right)^{\otimes k} & \rightarrow\left(\mathbb{C}^{\alpha}\right)^{\otimes n} \otimes\left(\mathbb{C}^{2}\right)^{\otimes k} \\
|x, y\rangle & \rightarrow \mid x, y \oplus f(x)) .
\end{aligned}
$$

Use simple circurt

Output is

$$
\begin{aligned}
& \left.\left(H^{\theta^{n}} \otimes \mid \alpha\right) \circ U_{F} \circ\left(H^{\otimes n} \otimes \mid \alpha\right) \mid 0^{n}\right) \otimes\left|0^{k}\right\rangle \\
& =\left(H^{\otimes n} \otimes \mid \alpha\right) \circ U_{F}\left(\frac{1}{2^{n / 2}} \sum_{x=0}^{\alpha^{n}-1}|x\rangle\left|0^{k}\right\rangle\right) \\
& =H^{\otimes n} \otimes\left|\alpha\left(\frac{1}{2^{n / \alpha}} \sum_{x}|x\rangle|F(x)\rangle\right)\right. \\
& =\frac{1}{\alpha^{n}} \sum_{x / y}(-1)^{x} \int_{\text {i }}|y\rangle|F(x)\rangle \\
& H^{\otimes n} \sum_{x}|x\rangle=\frac{1}{2^{n / 2}} \sum_{x, y}(-1)^{x \cdot y}|y\rangle
\end{aligned}
$$

$$
=\frac{1}{2^{n}} \sum_{x \mid y}(-1)^{x \cdot y}|y\rangle|F(x)\rangle
$$

If we measure the y output in computational basis, then probability of seers a specific bit string $y \in\{0,1\}^{n}$ is

$$
\| \frac{1}{2^{n}} \sum_{x}(-1)^{x-y}|f(x)\rangle \|^{2}
$$

Now sum of $I=\operatorname{lmage}(F)$:

$$
\| \frac{1}{2^{n}} \sum_{x}(-1)^{x \cdot y}|f(x)\rangle\left\|^{2}=\right\| \frac{1}{2^{n}} \sum_{z \in I}\left[(-1)^{x_{i} y}+(-1)^{\left(x_{2}+s\right)-y}\right]|z\rangle \|^{\alpha}
$$

where $f^{-1}(z)=\left\{x_{z}, x_{z}+s\right\}$

> Get uniform distribution on "Construction interforcice" $\{0, s\}^{\perp}=\left\{x \in\{0,1\}^{n} \mid x \cdot s=0 \bmod \alpha\right\}$ Performing experiment l times, get $x_{1}, x_{2}, \cdots, x_{l}$ such that $x_{i} \cdot s=0 \mathrm{mod} \alpha$ For all s. Generate $\{0, s\}^{\perp}$ with probability $\geq 1-\frac{\left|\{0, s\}^{2}\right|}{\alpha^{l}}=1-\frac{1}{2^{l-n+1}}$.

If x_{11}, \ldots, x_{l} generate, ca recover s as (non-trivial) solution to

$$
\left\{\begin{array}{c}
x_{1} \cdot s=0 \bmod \alpha \\
x_{2} \cdot s=0 \bmod \alpha \\
\vdots \\
x_{l} \cdot s=0 \bmod 2
\end{array}\right.
$$

What the heck just happened?

Not exactly clew, bot it gancolizes...

Hidden subgroup problem
Input: Fintely serrated group G, set X and black box function

$$
F: \sigma \rightarrow X
$$

that is constant on coset of $H \leqslant \sigma$ (and distinct on distinct coset).
Problem: Find generators of H.

Abelian hidden subgroup problems well understood. (Solvable in B QP?)

Many important special
cases among them, including:

- Detsch's problem $\}$ contrived
$\left.\begin{array}{l}\text { - discrete log } \\ \text { - order-Finding } \\ \text { - period -Finding }\end{array}\right\}$ Useful!

Basic idea: com implenat Fourier transforms on abelian groups on quantum computer

Rather then do thus generally, let's cut to the chios:
Factoring.
II. Reducing factoring to period finding

Factoring Problem
Given integer N in binary, compute prime factorization

$$
N=p_{1}^{k_{1}} \ldots p_{l}^{k_{l}}
$$

reduces to
Factor Finding
Give $N>1$, Find $1<k<N$ that divides N, or, if not possible, return "Is prime."

Note: Miller-R-bi- (BPP) or Agrawa)-Ksyal-Saxena (P) primality test allow us to assume N composite.

Factor-Finding For composite integers reduces in BPP to
Order - Finding
Given N and $1 \angle x<N$ with $\operatorname{gcd}(x, N)=1$, Find smallest $r \geqslant 1$ such that

$$
x^{r}=1 \quad \bmod N
$$

So, r is ordor of x in $(\mathbb{Z} / N \mathbb{Z})^{x}$

Factor - Finding \longrightarrow Order - Finding
Two basic steps:
$1 . x^{2}=1 \bmod N$ but $x \neq \pm 1 \bmod N$ yields Factor (either $\operatorname{gcd}(x-1, N)$ or $\operatorname{gcd}(x+1, N)$)
2. A raitonty chosen $y \in(D / N Z)^{x}$ has even order r and $y^{\Gamma / 2} \neq \pm 1 \bmod N w /$ longe probability.

If we have such a y_{1} then

$$
\operatorname{gcd}\left(y^{\Gamma / \alpha} \pm 1, N\right) \text { will }
$$

be a factor, by step 1 .

Factor - Finding $\longrightarrow O r d_{e r}$ - Finding in BPD
Two precise theorems:

1. Suppose N has L bits, is composite, and x satifiow,

$$
\left\{\begin{array}{l}
1 c x<N \\
x^{2}=1 \bmod N \\
x \neq \pm 1 \bmod N
\end{array}\right.
$$

Then either $\operatorname{gcd}(x-1, N)$ or $\operatorname{gcd}(x+1, N)$ is a nontrivial factor of N.
2. Suppose N odd, composite, and $N=p_{1}^{k_{1} \ldots} p_{l} k_{l}$ is prime factorization. IF $1 \leq x \leq N-1$ is a uniformly candor integer $w / \operatorname{gcd}(x, N)=1$ and r is order of x in $(\mathbb{Z} / \sim \mathbb{Z})^{x}$, then

$$
\begin{aligned}
\operatorname{Prob}\left(r \text { even ad } x^{r / 2} \neq-1 \bmod N\right) & \geq 1-\frac{1}{2 l} . \\
& \geq 1 / 2
\end{aligned}
$$

The reduction.

1. If N even, return 2 .
2. If $N=a^{b}, a \geq 1, b ? 2$, return a.
3. (Loose randan $1<x<N-1$. If $\operatorname{gcd}(x, N)>1$, $\quad\left(O\left(L^{2}\right)\right)$ return ged.
4. Find r_{1} the order $f x$ in $(\mathbb{R} / N \mathbb{Z})^{x}$ (Use quaition Computer)
5. If rood, pick another $x \quad(0(1))$
6. If r even, test if $g\left(\partial\left(x^{r / 2}+1, N\right)\right.$ or $g\left(\partial\left(x^{r / 2}-1, N\right)\right.$ is a factor. IF neither is, the pick anther x.
Shows Factor-Finding in f $B P P^{\text {order.fuding }}$

Sine $f B P P \subseteq f B Q P$, if we con show
Orderins-finding $\in f B Q P$,
then Factoring $\in f B Q P$ too,
III. Phase estimation and ordes-finding

Phase estimation is a general procedure for estimating eigenvalues of unitary (or Hermitian) operator U when we have controlled-Ui operator accessible as oracles for every j.

Unitary $U+$ e vector $|u\rangle \leadsto \tilde{\theta}$ ere $U|u\rangle=e^{2 \pi i \theta}(u)$ Controlled - $\cup \dot{\gamma}$:

$$
(-\cup \dot{\gamma}:|\dot{\gamma}\rangle \otimes|u\rangle \longmapsto|\dot{\gamma}\rangle \otimes \cup \dot{\gamma}|u\rangle
$$

Quantum phase estimation protaol (sins protocol...) Input: (i) Black box for C-U ن
(ii) eigenvector $|u\rangle$ with $U|u\rangle=e^{2 \pi i \varphi_{u}}|u\rangle$
(iii) integer n
(iv) $\varepsilon>0(e, g, \varepsilon=1 / 3)$

Output: n-bit approximation $\tilde{\varphi}_{u}$ to φ_{u}
Performance: : $O\left(t^{2}\right)$ cuntive, where $t=n+\left\lceil\right.$ lg $\left.\left(\alpha+\frac{1}{\varepsilon}\right)\right\rceil$

- One call to $C-U i$

$$
t=O_{(n)}
$$

- Succeeds () probability at least $1-\varepsilon$.

I wont discuss circuits for phase estivination now but instead how to reduce order finding to it.
Wat to find order of x in $(\mathbb{Z} / N \mathbb{Z})^{x}$.
Use

$$
\left.U:\left.\right|_{y}\right\rangle \mapsto \begin{cases}|x y \bmod N\rangle & \text { if } 0 \leqslant y \leqslant N-1 \\ |y\rangle & \text { if } \quad N \leqslant y \leqslant L^{L}\end{cases}
$$

where L is $\#$ bits in description of N.

Eigenvector of U : (not all of them...)

$$
\left(u_{s}\right)=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp \left[\frac{-2 \pi i s k}{r}\right]\left|x^{k} \bmod N\right\rangle
$$

for $0 \leqslant s \leqslant r-1$ Eiguvalues: $e^{2 \pi i s / r}$

Lives: C-U8? Module exponentiation...

$$
\left|u_{s}\right\rangle ? \text { Prepare } \frac{1}{\sqrt{T}} \sum\left|u_{s}\right\rangle=100 \ldots 01
$$

instead...
$\mathrm{s} / \mathrm{r} \leadsto r$? Continued Fration trock=.

