M_{-1} , \mathcal{B} ()	4	
Jeleting Some gu	n/um algor. Tums	
· · · · · · · · · · · · · · · · · · ·		
1. Simon's problem		
1. Reducing Factorine to	period - Findine	
) . . .	
T $D $ $($ $)$	T	
I Max estimation and	period - Trading and a	
	· · · · · · · · · · · · · · · · · · ·	

I. Simon's problem
First, recall Deutsch's problem can be solved in O(1) on
quantum computer.
Input: - black box function
F: {0113 ~>> {0113
which is promised to be either: i) Constant, or ii) belanced, meaning #F-1(0) = #F-1(1). Problem: Decide Mether F is constant or belanced.
Classically, requires 2 ⁿ⁻¹ +1 evaluations of F. "Oracle separation" of BRP and P.

Since RPP is "realistic" classical computing, Can We separate RPP and BRP?
Warning! PEBPPEBQPEPSPACE, and we don't know if P=PSPACE!
Is there an ORACLE separation of BPP and BQP?

Simon's problem replace of X	c. f.
Given black box/oracle Function of XIZ 2m	
F: {0,13" -> {0,13t (k2n-1)	· · · · · · · · · ·
which is promised to satury	· · · · · · · · · ·
$f(x) = f(y)$ if and only if $x - y \in \{0, s\}$ For some of $\{0, 1\}^n$	· · · · · · · · · · · ·
Problem: Find S.	· · · · · · · · ·
Can't be solved in BPPF. Even a probabilistic	· · · · · · · · · ·
algorithm requires at least 2 ^{h/2} queries to oracle	· · · · · · · · · ·
to Find $x \neq y$ with $f(x) = f(y)$.	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·

Sinon's algorithm Suppose have usual "quatum oracle" For F $U_{\Gamma}: (\mathbb{C}^{\lambda})^{\otimes m} \otimes (\mathbb{C}^{\lambda})^{\otimes k} \longrightarrow (\mathbb{C}^{\lambda})^{\otimes n} \otimes (\mathbb{C}^{\lambda})^{\otimes k}$ $|x,y\rangle \rightarrow |x,y \oplus F(x))$ Use simple circuit 10>⁸"-[H[®]"-[-] Hont $|F(x)\rangle$

0)" [10" Shorthind	Fr
107-[H]- [07-[H]-	

Output is (H@n @1d) 0 UF 0 (H@n@1d) 10h) @10k> J V2 (1-1) $= (H^{\otimes n} \otimes J_{d}) \circ U_{F} \left(\frac{1}{2^{h/2}} \sum_{x=0}^{2^{h-1}} |x\rangle / 0^{h} \right)$ $= H^{\otimes n} \otimes IJ\left(\frac{1}{2^{n/2}} \sum_{x} |x\rangle| + (x)\right)$ $=\frac{1}{\lambda^{n}}\int_{-1}^{\infty}(-1)^{x} \langle 1 | \gamma \rangle F(x) \rangle$ \times 1 γ dot product over Z/2Z $H^{\otimes n} \sum_{x} |x\rangle = \frac{1}{\lambda^{n/2}} \sum_{x,y} (-1)^{x,y} |y\rangle$

$=\frac{1}{2\pi}\sum_{X,X}(-1)^{X,X} Y\rangle E(X)\rangle$
If we measure the y output in computational basis, then
probability of seens a specific bit string y E 20,15 is
$ \left\ \frac{1}{2} \sum_{x} (-1) \left(\frac{1}{2} \left(\frac{x}{x} \right) \right) \right\ $
$\frac{1}{2^{n}} \sum_{x} (-1)^{x \cdot y} F(x) ^{2} = \frac{1}{2^{n}} \sum_{z \in I} [(-1)^{x_{z} \cdot y} + (-1)^{(x_{z} + S) \cdot y}] z ^{2}$
where $f^{-1}(z) = \{x_{2}, x_{2} + s\}$

$\left\ \frac{1}{1^{n}}\sum_{x_{2}}\left[\left(-1\right)^{x_{2}}+\left(-1\right)^{(x_{2}+s)}-y\right]\right\ _{2}\right\ _{1}^{2}=\int_{1}^{\infty}O if y=s=1 \mod d$
2 E I 1 1 F Y-S=0 mod 2
destruction intertirment 1/1 and s70
Take away:
Get uniform distribution on Constructur interforence
$\{0,s\}^{\perp} = \{x \in \{0 \}^{n} \mid x \cdot s = 0 \mod a\}$
Performing experiment & times, get X1, X21, X2 such
that Xi · S = O mod 2 for all S. Generate { 01 s 32
with probability $\geq 1 - \frac{150, s^2}{2} = 1 - \frac{1}{2}$
\mathcal{L}^{ℓ} $\mathcal{L}^{\ell-n+1}$

[F x1,, Xl	generate, Can recover 5 as
(Mon - trivial)	So UTion at to a second a se
	· · · · · · · · · · · · · · · · · · ·
	/X·C=O mod 2
	$X, \zeta = D$ mod d
	· · · · · · · · · · · · · · · · · · ·
	X. S=O mod

What	fhe	heck	just	4 appens o	, ?
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · ·			
Mat exactly	Cecre	st it are	ml: zex · · · ·		

Hidden Subgroup problem Input: Finitely generated group G, set X and black b.x function $F: G \rightarrow X$ that is constant on cosets of HEG (and distinct on distinct cosets). Problem: Find generators of H.

Abelian hidden s well understood	subgrou (So)ua	$\frac{1}{2}$ $p^{\prime}c$	blems RQP	?)	
	Mary	impor	tast	Spec:~	J
Cases among th	em, "	cluding			
- Deutsch's problem - Simon's problem	2 Contri	1ed	· ·	
- discrete log - order - Finding	Vseful			
- period - Finding	· · · · · · · · · ·	· · · · · · · · ·	· · · · · · ·	· · · · · · · · ·	· · · · · · · · ·

Basic idea:	con implene	t Four:	r tronsf	brang on	
· · · · · · · · · · · · · · · · · · ·	abelian gro	ups on	quartum	computer	
· · · · · · · · · · · · · · ·			· · · · · · · · · ·	· · · · · · · · · · ·	
Routher flra	n to this a	errally,	it's cut	to the ch	~ }~
	7				
	· · · · · · · · · · · · · · · · · · ·				
	actorin	d · · · · · ·	· · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · ·
· · · · · · · · · · / · · · · · · · · · · · · · · · · · ·			· · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·

II. Reducing Factoring to period Finding
Factoring Problem
Given integer N in binary, compute prime factorization $N = p_1^{k_1} \cdots p_k^{k_k}$
reduces to
Given N>1, Find 14 KCN that divides N, or, iF not possible, return "Is Prime."
Note: Miller-Rabin (BPP) or Agrawal-Kayal-Saxena (P) primality test allow us to assume N composite.

Factor-Finding For composite integers reduces in BPP to	
Order - Finding Given N and ILXLN with gcd (x,N)=1, Find Smallest F71 such that	· · · · · · · · · · · · · · · · · · ·
$x^{r} = 1 \mod N$	
Soir is order of x in $(\mathbb{Z}/N\mathbb{Z})^X$.	
	· · · ·
	· · · ·

Factor - Funding - Order - Finding
Two basic steps
1. X2=1 mod N but X = + 1 mod N yields
Factor (either gcd (x-1,N) or gcd (x+1,N))
2. A calonly chosen y E(2/NZ) has even order r
and y 1/2 # # 1 mod N w/ large probability.
IF we have such as you they
$gcd(\gamma^{r/2} \pm 1, N)$ will
be a factor, by step 1.

Factor - Fu	Jing g	Order - Fi-	nd ing in	BPP	
(~o precis	e theorems	•			
1. Suppose	N Kas	L bets, is a	ourposite, and	x Satis	F.,
		· · · · · · · · · · · ·	· · · · · · · · · · ·		
	$(c \times c \wedge$	/:::::::::::			
	1.2-1				
	$\sum X^{-1} = \overline{-} + 1$	mod /V			
	TX ==+	mod	· · · · · · · · · · · · · · · · · · ·		
The eith	r q c d ($\times -1, \mathcal{N}$) or	gcd (X + 1,	N) is a	
No-trivial	Factor	$= \Lambda I_{1}$			

2. Suppose N odd, composite, and N=p, KI is prime Factorization- IF 14× EN-1 is a Uniformity candom integer w/ gcd(x,N)=1 and r is order of x in $(2/N2)^{\times}$, then Prob (reven and x 1/2 = - 1 mod N) 2 1 - 1 - 21. $\frac{2}{2}$

1. IF N even, return 2. (O(1))
$\lambda = a^{b}, a^{2}, b^{2}, ceturn a.$ (O(L ²))
3. Choose condour 1 L X L N-1. F gcd(X,N)>1, (O(L2))
return ged.
4. Find r, the order at x in (ZINZ) X. (Usi quartum Computer)
S. If rowd, pick another X. (O(1))
6. If r even, trut if god (x 1/2+1, N) or god (x 1/2-1, N)
is a factor. IF neither is, the pick another X.
(have Factor-Finding + RPD order-Finding

•	i (f	₹	S F	?}	ר כי ני	Ċ	JL	Ś	G	P		1	, f		L L	, , ,	د م	• •	C	י ר-ר	· ·	ى	4-	- - -	· · ·	•	• •	•	•	· ·	•	•	•	• •	•	•	• •
•	· ·	•	•	•	· ·	•	Ċ		9			1 15		Ĵ	n n	רטר שר		، م	. (6	f	ß	6	2) 2	· ·	•	· ·	•	• •	•	• •	•	•	· ·	•	•	•	· ·	•	•	· ·
•	· ·	ł		2 2 -	י ר י	•		F	90		ь Но с	, F	; ; /		· · ·	2	f) }	Q	Ą	•	• •	}	50	· · ·	•	· ·	•	· ·	•	• •	•	•	· · ·	•	•	•	· ·	•	•	· ·
•	• •	•	•	•	• •	•	•	•	• •		•	•	•	•	••••	•	•	•	• •		•	•	• •		•	• •	•	• •	•	• •	•	• •	•	0	• •	•	•	•	• •	•	•	• •
•	· ·	•	•	•	· ·	•	•	•	· ·		•	•	•	•	· ·	•	•	•	• •		•	•	• •	• •	•	· ·	•	· ·	•	• •	•	• •	•	•	· ·	•	•	•	• •	•	•	• •
•	· ·	•	•	•	· ·	•	•	•	· ·		•	•	•	•	· ·	•	•	•	· · ·		•	•	· · ·	• •	•	· ·	•	· ·	•	· ·	•	••••	•	•	· ·	•	•	•	· ·	•	•	· ·
•	• •	•		•	• •	•	•		· ·		•	•	•	•	· ·	•		•	· ·			•	· ·		•	• •	•	• •	•	• •	•	• •	•		• •	•	•		• •	•	•	• •
•	· ·	•	•	•	· ·	•	•	•	· ·		•	•	•	•	· ·	•	•	•	· · ·	•	•	•	· · ·	• •	•	· ·	•	· ·	•	• •	•	• •	•	•	· ·	•	•	•	• •	•	•	• •
•	· ·	•	•	•	· ·	•	•	•	· ·		•	•	•	•	· ·	•	•	•	• •		•	•	• •	• •	•	· ·	•	· ·	•	••••	•	• •	•	•	· ·	•	•	•	· ·	•	•	· ·
	• •																																									

III. Phase estimation and order-finding
Physe estimation is 9 general procedure
for estimating eigenvalues of a unitary (or Harmitian)
operator U when we have controlled - Un operator
accessible as oracles for every jr.
Unitary V + evector (4) ~ 7 & where U/4) = ettil (2)
Controlled - U i .
$C - U^{\dagger} : _{\dot{\gamma}} \otimes _{\mathcal{Z}_{\gamma}} \longrightarrow _{\dot{\gamma}} \otimes U^{\dot{\gamma}} _{\mathcal{U}_{\gamma}}.$

Quantum phase estimation protocol (sons protocol)
Input: (i) Black box For C-Ur
(ii) eigenvector /u) with U/u) = e u/u/u)
(Tii) integer n
(iv) $\xi > 0$ (e.g. $\xi = \frac{1}{3}$)
Output: u-bit approximation l'u to lu
Performance:= O(t2) contine, where t= n+ Moy (2+ 2)]
- O_{ne} call to $C - U^{\gamma}$ $C = O_{n}$
- Succeeds ~/ probability at lest 1-E.
· · · · · · · · · · · · · · · · · · ·

I won't discuss circuits For phase estimation may but instead how to reduce order finding to it.
Wont to Find order of X in (Z/NZ)X.
Use
(): In For XX mod NY : FOENEN-1
$\langle 1_{\gamma} \rangle$; $F N \leq \gamma \leq 2^{L}$
where Lis # bits in description of N.
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

Eigenvectors of U: (not all of them...) $(u_s) = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp\left(\frac{-\partial \pi i sk}{r}\right) | x^k \mod N$ For OLSET-1. Eignvalues: e 2775/ssues: C-U8? Mobiler exponentiation ... (us)? Propose 15 (us) = (00--01) instead ...

· ·	•	<	· ·	•	• •	•			• •	•	•		0	• •		-	•	•••	, 1	· ·			• •		7	•		•	• •					· ·	•	• •	
• •	•			r		•	(<u> </u>) :	•	5	5	•		C	<u> </u>	0		[; ;	1	Je	20		-	\mathcal{H}	ø	30	^			+/	27	h.	,	-	• •	
• •					• •				• •			• •	0	• •		٠	•		٠	• •			• •								•			• •	0	• •	
														• •																							
• •			• •		• •							• •		• •				• •					• •		• •				• •					• •		• •	
• •		•	• •		• •		• •		• •			• •		• •	•			• •		• •	•		• •		• •				• •	•				• •		• •	
																																					, ,
• •			• •		• •							• •		• •									• •		• •									• •			
• •			• •		• •		• •		• •			• •		• •				• •		• •	•		• •		• •				• •					• •		• •	
• •	•	•			• •	•		•		•	•	• •	•			•						•						•		•				• •			•
• •					• •				• •			• •		• •				• •					• •						• •					• •		• •	
• •			• •		• •		• •		• •			• •		• •				• •		• •			• •		• •				• •					• •		• •	
												• •																									
• •					• •				• •			• •		• •				• •		• •	•		• •						• •					• •		• •	
• •		•	• •		• •		• •		• •			• •		• •	•			• •		• •	•		• •		• •				• •	•				• •		• •	
					• •							• •		• •									• •		• •				• •					• •		• •	
• •			• •		• •		• •		• •		•	• •		• •		٠		• •		• •			• •		• •				• •					• •		• •	