	,		 	
Meeting G. Z: Quan	tum error	rorrection	 	
L. Werview			 	
T Direction f			 	
	ectors		 	

I. Over view
Should "fully programmable" quatures computers actually be built,
it is generally expected that BRP will be correct abstraction
of quantum polynomial time.
But realistically, two practical issues to grapple with when
engineering a quantum computer:
le Storing quantum states in a stable way.
L. Implementing Correct quantum gartes.
What's the proslem: NOISC.
1. Word un States very delicate. 1 ricidentally measuring Charges the states) 2. Unitary group U(n) is not discrete ("Continuous errors" can compound.)

In theory, these issues should be solvable, by two to chniques:
1. Runtum error correcting codes
2. Fault tolerant quantum computation.
We will Focus on the first, but let me First address the second.
Basic idea of fault-tolerance:
in addition to using codes to store states, use encoded gualing
gates.
$ 0\rangle - H$ $ 0\rangle^{\otimes 7} + FT \text{ prepare} FT \text{ prepare} FT H \text{ correct} FT H \text{ correct} FT FT \text{ prepare} FT \text{ prepare} FT H \text{ correct} FT H$
$ 0\rangle$ $ 0\rangle^{\otimes 7} + FT \text{ prepare}_{ 0_L\rangle} FT \text{ error}_{correct} FT \text{ error}_{correct} FT \text{ error}_{correct}$
· · · · · · · · · · · · · · · · · · ·

Concatenating two codes (encoding one code inside another) costs polynomial overhead, but can lead to an exponential improvement in error rate. Iterating yields:

Threshold theorem for quantum computation: A quantum circuit containing p(n) gates may be simulated with probability of error at most ϵ using

 $O(\operatorname{poly}(\log p(n)/\epsilon)p(n)) \tag{10.116}$

gates on hardware whose components fail with probability at most p, provided p is below some constant *threshold*, $p < p_{th}$, and given reasonable assumptions about the noise in the underlying hardware.

p~ 10-6

Note:	fault tolerant classical computing much easier to
· · · · · · · ·	achieve. It thinks a constant error rate OLELY3
· · · · · · · ·	at every stip of a classical Boolean circuit
· · · · · · · ·	causing independent but Flip errors, then
· · · · · · · ·	repetition Codes, e.g.
· · · · · · · ·	0 H7 000 Majority rule
	AND > AND AND AND AND
· · · · · · · · ·	allow us to make x Y x, Y1 x2 Y2 x3 Y3
· · · · · · · · ·	£70 as small as we'd like.
Quartur	m analog of this code is not very good

What's a quantum code?	•
An n-qubit quantum error-correcting code of dimension d is	
a Hilbert subspace	
$\mathcal{H} \subseteq \mathcal{C}^{\lambda} \otimes \mathcal{C}^{\lambda} \otimes \cdots \otimes \mathcal{C}^{\lambda} = (\mathcal{C}^{\lambda})^{\otimes n} \cong \mathcal{C}^{\lambda^{n}}$	•
n "physical" qubits (n called "length" & code)	•
IF 1- 1K II a H and the kind out the	
1) d-d, then we say i cheades in logical forms.	
It is sometimes called the Code space.	•
It is sometimes called the code space. Not all subspaces are some! How they sit in ([2) ⁸ M	•
It is sometimes called the code space. Not all subspaces are some! How they sit in ([2) ⁸⁴ wir.t. tensor decomposition matters	
It of a then we say it chooses it is great forth. It is sometimes called the code space. Not all subspaces are some! How they sit in ([2) ⁸⁰⁴ wir.t. tensor decomposition matters	

Con	pare las	;de ((C 2) @	25				· · · ·	· · · · ·			· · · ·	•
 	À	f = Span	٥٥٥ کے	··•07, 1	/1 17	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	("(cp	puntun etit:)	e")		· · · ·	•
· · · · · ·	74	2 = span	[000	0>,	100-	07	3 (*	frivia	L Ca	le")		· · · ·	•
Both	2-dimen	sional, s.	+1.e-1	both	encode	2 9	Sin	gle	quh	;}		· · ·	•
 	· · · · · · · · ·	H			H,	· · · · ·	· · ·	· · ·	· · · · ·	· · ·		· · ·	0
5+	Hi apper	rs ^r Sp	rend o	-t m	nore.	· · · ·	· · ·	· · ·	· · · · ·	· · ·	· · ·	••••	•
How	to make	pre cise?	· · · · · ·	· · · · · ·		· · · · ·	· · · ·	· · ·	· · · · ·	· · ·		· · ·	•
· · · · · ·	· · · · · · · · · ·		· · · · · ·	· · · · · ·	· · · ·	· · · ·	· · ·	· · ·	· · · · ·	· · ·	• •	· · ·	•
· · · · · ·	· · · · · · · · · ·		· · · · · ·						· · · ·			· · ·	

Local bit Flip error supported on single qubit
Not true for 1000> and 1111>.
More importantly, It, is an entire subspoke, not just the
two basis states. Since quantum computers wat to exploit superposition and entackment, we want to detect and
Correct errors on <u>orbitrary states</u> in the codespace.
The repetition code will be able to detect
up to n-1 bit flip errors and correct up to [1/2]

Recoll $\frac{1}{2} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Given $(b_1, b_2, \dots, b_n) \in (\mathbb{C}^2)^{\otimes n}$, define $X_{j}|b_{j}b_{j}\cdots b_{n}\rangle = |\partial_{(\mathbb{C}^{2})^{\otimes j-1}} \otimes X \otimes |\partial_{(\mathbb{C}^{2})^{\otimes n-j}}|b_{j}b_{j}\cdots b_{n}\rangle$ = $|b_1 - b_1 \rangle \otimes X |b_1 \rangle \otimes |b_{1+1} - b_h \rangle$ So Xi is a bit Flip error at it qubit We define Zi similaly, as a (relater) planse flip at the ith gubit.

E.g. n= S. 74 = spon { [000007, [1]11]}
$X_{1}X_{4}\left(\sqrt{\frac{3}{5}} 00000\rangle+\sqrt{\frac{3}{5}} 1111\rangle\right)$
三月10010>+月01101>
"Majority rule" corrects His X, Xy error CORRECTLY.
$X_{2}X_{3}X_{5}(\sqrt{\frac{2}{5}} 00000) + \sqrt{\frac{2}{5}} 1111))$ = $\sqrt{\frac{2}{5}} 01101) + \sqrt{\frac{2}{5}} 10010\rangle$
We could measure to see that errors occurred, but
will recover incorrect state.

('ve been uncaretu). How do ve s	see ensis occured
withat spailing the states?	
Do measurement ~/ operators	
Po = 100000/600001 + /11111/ 11111</td <td>(mo error) provined</td>	(mo error) provined
$P_{1} = (10000) \times (10000) + (01111) \times (01111)$	(bit flip on 1) prosumed
$P_{2} = 0 000 \times (01000 + 10 11) \times (1011)$	(Lit Flip on 2) presumed
: P _k = /11000×11000/+ /00111><00111)	(Lit Flips on 1+2) presured
Р = /101007<10100)+ /01011><01011)	(bit flips on 1+3) presured)
$P_{N} = (00011) < 00011 + (11100) < (11100)$ $I - P_{1} - P_{2} - \dots - P_{N}$	(bit Flips on 4+5) presumed

So repetition code good at detecting bit Flip en	°~S
However, H, is still a bad QUANTUM code. A single local 2 error on H, Can swap orthogonal states:	
$\frac{2}{\sqrt{2}} \left(\frac{ 0007 + 1117 }{\sqrt{2}} \right) = \frac{ 0007 - 1117 }{\sqrt{2}}$	
H, can not detect any Z errors.	
	· · · · · · · · · · · ·

So we're Two key	left issues	high	and (dry 5	now.
l. Do go exist?	od quai	tun crro	(Co((ecting	Codes
2. What X or	about 2?	er(25	Hbort	aren 17	 · · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · ·

I. <u>D.</u>	ccretiza	tion of	errors			· · · · · · · ·		· · · · · · · · ·	•
Fr	twately	, (†	two e	rars	ase Con	ectable,	So is	any	•
ไว	par Co	mbingt	ion of	theary	• • • • • • •				•
Ne	ed to	make	some t	tings	precise	Forst:	· · · · · · · · ·		•
	Error	- al	noise		F		· · · · · · · ·	· · · · · · · · ·	•
ι 	. Detect	able e	cror al	Code	distant	· · · · · · · ·	· · · · · · · ·	· · · · · · · · ·	•
Z	. Correc	table e		· · · · ·		· · · · · · · ·	· · · · · · · ·	· · · · · · · · ·	•
· · · · ·	· · · · · ·	· · · · · · ·	· · · · · · · ·	· · · · · ·		· · · · · · · ·	· · · · · · · ·	· · · · · · · · ·	•
· · · ·	· · · · ·	· · · · · · ·	· · · · · · · ·	· · · · ·		· · · · · · · ·		· · · · · · · · ·	•
· · · ·						· · · · · · · ·			•
· · · ·	· · · · ·					· · · · · · · ·			•

If) $f \in (\mathbb{C}^2)^{\otimes n}$, a noise (or error) space is any subspace $\mathcal{E} \subseteq \mathcal{B}((\mathbb{C}^2)^{\otimes n}) \longrightarrow all linear tractions ations(=Mat((\mathbb{C}^2)^{\otimes n}))$
An error is my EEE.
We say if detects E ; F exists $\lambda \in \mathbb{C}$ such that $\langle \Psi E \Psi \rangle = \lambda_E \langle \Psi \Psi \rangle$ For all $ \Psi \rangle, \Psi \rangle \in \mathcal{A}$. $IF P$ is atheneod projection onto it. Equivalent to $I_{\mathcal{A}}$
Environ $PE(14) = \lambda_E(14)$ measure of $P_1 I - P$ operators to decide whether $For all (14) \in H$. after E acts, IF answer is "tos" (hopens $Measure of P_1 I - P$ $Measure of P_1 I - P$ Measu

The distance of H is smallest dEN such that
there exists an error supported on d qubits that
)It can not detect.
(Trivial and repetition codes both have distance 1.)
H corrects errors from E if for all X, YEE
It detects Xty.
Theorem This is correct definition of "correcting errors
From E." Ley it's equivalent to requiring there
exist a "error correcting procedure."
· · · · · · · · · · · · · · · · · · ·

		1	· ->:	11
Eq	Uù	/ 9	n)	14

Theorem 10.1: (Quantum error-correction conditions) Let C be a quantum code, and let P be the projector onto C. Suppose \mathcal{E} is a quantum operation with operation elements $\{E_i\}$. A necessary and sufficient condition for the existence of an error-correction operation \mathcal{R} correcting \mathcal{E} on C is that

 $PE_i^{\dagger}E_jP = \alpha_{ij}P,$

(10.16)

for some Hermitian matrix α of complex numbers.

Take - aways
1. IF H corrects/detects X and Y, then it
corrects/detects aX+by.
2. dist It > 2k if and only if It corrects all
errars on k qubits.
3. Because products of X's and Z's and I's
generate B((C2)BK), suffices to correct
them on all k-gulit subsets in order
to correct ALL k-qubit errors.
Theorem At corrects all errors on the gubits it
and only if it detects all errors that are products
of at most 2K Xi's and Zi's.