
Meeting 8.2 : Quantum error correction

I. Overview

II. Discretization of errors



II. Overview

Should "

fully programmable
"

quantum computers actually be built
,

it is generally expected that BQP will be correct abstraction
n'

of "quantum polynomial time .

But realistically , two practical issues to grapple with when

A

engineering a quantum computer .
H. Storing quantum States in a stable way .

2 . Implementing correct quantum gates .
What's the problem ? NOISE .

I . Quantum States very delicate
.
("Accidentally measuring

"

changes the state.)
2 . Unitary group Ulu ) is not discrete ("Continuous errors" can compound -I



In theory
,
these issues should be solvable

, by two techniques !

I . Quantum error correcting codes

2. fault tolerant quantum computation .

We will focus on the first
,
but let me first address the second

.

Basic idea of fault - tolerance :

in addition to using codes to store States
,
use encoded quantum

gates .

O D O

→ O O O



[concatenating
"

two codes (encoding one code inside

another ) costs polynomial overhead , but can lead to
an

exponential improvement in error rate
. Iterating yields :

P to
- b



Note : fault tolerant classical computing much easier to

achieve . If there's a constant error rate OC Elks
at every step of a classical Boolean circuit

causing independent b. flip errors
,
then

repetition codes
, e.g .

0 to 000 Mamie
in " 'I ' ' 'IE: ?i;

allow us to make

{ 70 as small as we 'd like .

Quantum analog of this co is not very good . . .



What's a quantum code?

An n - qubit quantum error -correcting code of dimension d is

a Hilbert subspace
H E Eh 62×0 . - - ⑦ Q2 = @2)

n 2
"

by
= e

n
"

physical
"

qubits (m called "length" of code)
If d '- 2K

,
then we say

It encodes k logical qubits.
H is sometimes called the code space .

Not all subspaces are same ! How they sit in ) n

wat . tensor decomposition matters
.



Comparer : Inside €4 n

(quantum)
H

,
=

span { 1000
- - - 07

,
1111 . - - 17} ("repetition code

")

Hy -- span { 1000 - - - 07, 1100 - - - 07} (
"

trivial code
")

Both 2 - dimensional
,
so they both encode a single qubit

H
,
E E

'
E Ha

but H , appears
"

spread out
"

more.

How to make precise?



Local bit flip error supported on single qubit
can exchange 100 - - - o) and 110 - -

- o) .

Not true for 100 - - - O) and 111 . . - l) .

More importantly, H
,
is an entire subspace , not just the

two basis States
.

Since quantum computers want to exploit

superposition and entanglement, we wat to detect and

correct errors on arbitrary States in the codespace .2-

The repetition code will be able to detect

up to n- I bit flip errors and correct up
to 2)



Recall

X -- fo, 'o ) z -- fo' ;)

Given lb , b, - - -b.BE ) h

,
define

Xilbibs - - bn) = 1¥, in , X %, n. ;
Habs - --bn)

=/b
,
- bi > ⑦ Xlbi) Ibi. - -- bn )

So Xi is a bit flip error at ith qubit

We define Zi similarly , as a Gelatine) phase flip at

the ith qubit .



E.
g. n'- 5 . It -- span { 1000007, 111111) }
X
, Xy (ft 1000007-1%111111) )

= PEN 10010> t# fo 1101)
"

Majority rule
"

corrects this X. Xy error CORRECTLY .

XzXzX5ffE 1000007+13=111111) )
= M¥ 101101) + As 1100107

We could measure to see that errors occurred
,
but

majority rule will think X. Xy error occurred
,
and

will recover incorrect state
.



l 've been uncarefut How do we see errors occurred

without spoiling the states?

Do measurement w/ operators
Po = 1000007500000/+111111>4111111 (7%767)
P
,
= 11000075100001+1011117501111 ) (biforate, " t)

Pz ? 101000>(010001+1101,17510111) fbif.sn?ooh 2)
c.

bit flips on 1+2
Pk = 1110007511000/-1/001117800111 / ( presumed

)

Phu ! 1101007401001-1/0101175010111 (
bit

tpfie.su?fft3)
:

P = 1000117500011/+111 , oo> (11,001 (
bit flips on 4+5

N presumed
)

TI - P , - Pr . . . - PN



So repetition code good at detecting bit flip errors
.

However , H ,
is still a bad QUANTUM code

.

A single local Z error on H
, can swap

orthogonal states :

Z
, (100 - - ' + Ill - - - D) = too . - - o) - hi . - - D

vs

H
,
can not detect

any Z errors .



So we're left high and dry for now
.

Two key issues :

I . Do good quantum error correcting codes
exist ?

2. What about errors that aren't

X or Z?



II. Discretization of errors

Fortunately , if two errors are correctable
,
so is

any

linear combination of them
.

Need to make some things precise first :

I . Error and noise.

2- Detectable error and code distance

3. Correctable error



If H Ek#)
"

, a noise for error) space is
any

subspace E E B fro) ' ) Tall liner transformations
f-Mat Rn))

An error is my
F- E E .

We
say It detects E if exists ¥6 such that

HIEN> = ¥9147
For all 147,147 EH .

IF P is orthogonal projection onto H
, equivalent to

Intuition:

when we

saying #s¥I-PPE 14) = he ft) operators to decide whether
It) is still

a
codeword

for all 14 ) EH . after E acts
,
if answer is

"

Yes
" (happens

w/ prob. HEH) , we still have 147.



The distance of It is smallest DEIN such that

there exists an error supported on d qubits that
It can not detect .

( Trivial and repetition codes both have distance 1 . )
H corrects errors from E if for all X, YEE
It detects Xty .

theorem This is correct definition of
"

correcting errors

from E .

"

1. e., it's equivalent to requiring there

exist a
"

error correcting procedure .
"



Equivalently :



Take - aways
I. If He corrects (detects X and Y

,
then it

corrects /detects a Xtby .

2 . dist H > 2K if and only if It corrects all

errors on k qubits .
3 . Because products of X 's and Z 's and I 's

generate B 4 k )
,
suffices to correct

them on all k -qubit subsets in order

to correct ALL k - qubit errors.

theorem H corrects all errors on k qubits if
and only if it detects all errors that are products
of at most 2K Xi's and Zz's .


