Meeting 8.2: Quartum error correction
I. Overurew
II. Discretization of ecrors
I. Overview

Should "fully programmable" quatuon computers actually be built, it is generally expected that BQP will be correct abstraction of "quantum polynomial time."
But realistically, two practical issues to grapple with when engineering a quantum computer:

1. Storing quantum states in a stable way.
2. Implementing correct quatiom gates.

What's the problem? NOISE.

1. Quantum states very delicate ("Accidie, July measuring" chagos the state.)
2. Unitary group $U(n)$ is not discrete ("Continuous errors" can compound.)

In theory, these issues should be solvable, by two- techniques:

1. Quantum error correcting codes
2. Fault tolerant quantum computation.

We will focus on the first, but let me first address the second.
Basic idea of faul-tolecance:
in addition to using codes to store states, use encoded qualm gates:

"Concatenating" two codes (encoding one code inside another) casts polynomial overhead, but can lead to an exponential improvement in error cate. Iterating yields:

Threshold theorem for quantum computation: A quantum circuit containing $p(n)$ gates may be simulated with probability of error at most ϵ using

$$
\begin{equation*}
O(\operatorname{poly}(\log p(n) / \epsilon) p(n)) \tag{10.116}
\end{equation*}
$$

gates on hardware whose components fail with probability at most p, provided p is below some constant threshold, $p<p_{\text {th }}$, and given reasonable assumptions about the noise in the underlying hardware.

$$
p \stackrel{?}{\sim} 10^{-6}
$$

Note: fault tolerant classical computing much easier to achieve. If thai's a constant error rate $0<\varepsilon<1 / 3$ at every step of a classical Boolean circuit causing indepudet bit flip errors, then repetition codes, e.g.

$$
0 \mapsto 000
$$

$$
1 \longmapsto 111
$$

allow is to make

$\varepsilon>0$ as small as wed like.
Quantum analogy of this code is not very good...

What's a quantum code?
An n-qubit quantum error-correcting code of dimension d is a Hilbert subspace

$$
H \leqslant \underbrace{\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}}_{n \text { "physical" quits }}=\left(\mathbb{C}^{2}\right)^{\otimes n} \cong \mathbb{C}^{2^{n}}
$$

If $\alpha=2^{k}$, then we say $1 t$ encodes k logical quits. lt is sometimes called the codespace.
Not all subspaces are same! How they sit in $\left(\mathbb{C}^{2}\right)^{\text {On }}$ writ. tensor decomposition matters

Compare: Inside $\left(C^{2}\right)^{n}$

$$
\begin{aligned}
& \left.\psi_{\psi_{1}}=\operatorname{span}\{1000 \cdots 0\rangle,|111 \ldots 1\rangle\right\} \quad(\text { "(cpeltion (quition code") } \\
& \left.H_{\psi_{2}}=\operatorname{span}\{1000 \cdots 0\rangle,|100 \ldots 0\rangle\right\}(\text { "trivial code") }
\end{aligned}
$$

Both 2-dimensional, so thay both encode a single qubit

$$
\psi_{1} \cong \mathbb{C}^{2} \cong \psi_{2}
$$

but H_{1} appers "sprend out" moce.
How to minte precix?

Local bit flip error supported on single quit can exchase $|00 \cdots 0\rangle$ and $|10 \ldots 0\rangle$.
Not true for $|00 \cdots 0\rangle$ and $||1 \cdots|\rangle$.

More importantly, H_{1} is an entire subspace, not just the two basis states. Sine quantum computers wat to exploit superposition an eftrolement, we wat to detect ad correct errors on arbiliany sites in the codespace.
The repetition code will be abl to detect up to $n-1$ bit flip errors and correct op to $\lfloor n / 2\rfloor$

Recall

$$
x=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Given $\left(b_{1}, b_{2} \cdots b_{n}\right) \in\left(\mathbb{C}^{2}\right)^{\otimes n}$, define

$$
\begin{aligned}
X_{i}\left|b_{1} b_{2} \cdots b_{n}\right\rangle & \left.=\left|{\underset{(\mathbb{C}}{ }{ }^{2} \otimes^{\infty-1}}^{x} \otimes \underset{\left(\mathbb{C}^{2}\right)^{\otimes n-i}}{ }\right| b_{1} b_{2} \cdots b_{n}\right\rangle \\
& =\left|b_{1} \cdots b_{i}\right\rangle \otimes X\left|b_{i}\right\rangle \otimes\left|b_{i+1}-b_{n}\right\rangle
\end{aligned}
$$

So X_{i} is a wit flip error at ith qubit
We detine z_{i} similaly, as a (celatup) phise flip at the $i^{\text {th }}$ qubit.
$\left.E \cdot g \quad n=S . \quad I_{f}=\operatorname{spon}\{100000\rangle,|11111\rangle\right\}$

$$
\begin{aligned}
& \left.X_{1} X_{4}\left(\left.\sqrt{\frac{2}{5}} \right\rvert\, 00000\right)+\sqrt{\frac{3}{5}}|11111\rangle\right) \\
& \left.=\sqrt{\frac{2}{5}}|100| 0\right\rangle+\sqrt{\frac{3}{5}}|01101\rangle
\end{aligned}
$$

"Majority rule." corrects this $x_{1} x_{4}$ error CORRECTLY.

$$
\begin{gathered}
x_{2} x_{3} x_{5}\left(\sqrt{\frac{2}{5}}|00000\rangle+\sqrt{\frac{3}{5}}|1111\rangle\right) \\
=\sqrt{\frac{2}{5}}|01101\rangle+\sqrt{\frac{3}{5}}|10010\rangle
\end{gathered}
$$

We could measure to see that errors occurred, but majority rule will think $x_{1} x_{4}$ error occured, and will recover incorrect state.
('va been uncarefu). How do va see errors occured withat spoiling the states?
Do measurement $\sim /$ operators

$$
\begin{aligned}
& P_{0}=|00000\rangle\langle 00000|+|1111\rangle\langle\langle 1111| \text { (Mperverisor) } \\
& P_{1}=(10000)\langle 100001+(0111)\langle 0111) \quad \text { (bit frovip on 1) } \\
& P_{2}=|01000\rangle\langle 01000|+|10111\rangle\langle 10111 \text { (bit flip on 2) } \\
& P_{t}=|11000\rangle\langle 110001+\mid 00111\rangle\langle 00111|\left(\begin{array}{c}
\text { bit Flips on } \\
\text { presumed }
\end{array}+2\right) \\
& p_{k+1}=|10100\rangle\langle 10100|+|01011\rangle\langle 01011|\binom{\text { bit flips an } 1+3}{\text { presumed }} \\
& \left.P_{N}=|00011\rangle\langle 00011|+(11100\rangle\langle 11100) \text { (bit Flips on } 4+5\right) \\
& \bar{I}-P_{1}-P_{2} \ldots-P_{N}
\end{aligned}
$$

So repetition code good at detecting bit Flip errors

However, H_{1} is still a bad QuaNtum code. A single local Z error on H_{1} can swap orthogonal states:

$$
z_{1}\left(\frac{|00 \cdots 0\rangle+|11 \cdots 1\rangle}{\sqrt{2}}\right)=\frac{|00 \cdots 0\rangle-|11 \cdots 1\rangle}{\sqrt{2}}
$$

स, can not detect any Z errors.

So we're left high and dry tor now. Two key issues:

1. Do good quantum error correcting codes exist?
2. What about errors that wren it X or Z ?
I. Discretitation of errors

Fortunately, if two errors are correctable, so is any linear combination of them.

Need to make some things precise first:

1. Error al noise.
2.Detectadle error and code distance
2. Correctable error

If $) \& \in\left(\mathbb{C}^{2}\right)^{\otimes n}$, a noil (or error) space is any subspace $\varepsilon \leq \infty\left(\left(\mathbb{C}^{2}\right)^{\otimes n}\right)$ Fall lines tractomations $\left(=\operatorname{Mat}\left(\left({\left.\left(\left.C^{2}\right|^{8 n}\right)\right)}\right.\right.\right.$
An error is ay $E \in E$.
We say io detects E iF exists $\lambda_{E} \in \mathbb{C}$ such that

$$
\langle\varphi| E|\psi\rangle=\lambda_{E}\langle\varphi \mid \psi\rangle
$$

for all $\quad|\varphi\rangle,|\psi\rangle \in)+$.
If P is orthogonal projection onto H, equivalent to lututia saying

$$
P E|\psi\rangle=\lambda_{E}|\psi\rangle \text { me assure w/ } P_{1} I-P
$$

for all $|\psi\rangle \in H$. after E acts, if answer is "Yes" (hames $\sim \mid$ prob $\left(\lambda_{E} \mid 2\right)$, we still have $|\psi\rangle$.

The distance of if is smallest $d \in \mathbb{N}$ such that there exists an error supported on d quits that)f can not detect.
(Trivial and repetition codes both have distance 1.) If corrects errors from \mathcal{E} if for all $x, y \in \mathcal{E}$ If detects $X^{t} Y$.
Theorem This is correct detention of "correcting errors from E." le. it's equivalent to requiring there exist a "error correcting procedure."

Equivalutly:

Theorem 10.1: (Quantum error-correction conditions) Let C be a quantum code, and let P be the projector onto C. Suppose \mathcal{E} is a quantum operation with operation elements $\left\{E_{i}\right\}$. A necessary and sufficient condition for the existence of an error-correction operation \mathcal{R} correcting \mathcal{E} on C is that

$$
\begin{equation*}
P E_{i}^{\dagger} E_{j} P=\alpha_{i j} P \tag{10.16}
\end{equation*}
$$

for some Hermitian matrix α of complex numbers.

Take-aways

1. If It corrects/detects x and y, the it corrects/detects $a x+b Y$.
2. dist if $>2 k$ if and only if it corrects all error on k quits.
3. Because products of X 's and Z 's and I's generate $B\left(\left(\mathbb{C}^{2} \mid{ }^{(1)}\right)\right.$, suffices to correct than on all k-quit subsets in order to correct ALL k-quit errors.
Theorem At corrects all errors on K quits if and only if it detects all errors that ar a products of at most $\mu<x_{j}^{\prime} s$ and $z_{j} ' s$.
