Meeting 9.2: Toric code II, and stotailizer Formalism
I. Toric code codevectors and distance
II. Stabilizer formalism

Construction
REMINDER

1. Put a quint \mathbb{C}^{2} on each edge $\left(\alpha_{n}{ }^{1}\right)$
2. For each vertex v_{1} define:

$$
X_{V}=X_{v_{N}} X_{v_{S}} X_{V_{E}} X_{V_{w}}\left(\begin{array}{c}
\text { order doessit } \\
\text { mistier) }
\end{array}\right.
$$

For each 2-cell P ("plaquette"):

$$
z_{P}=z_{P_{N}} z_{P_{S}} z_{P_{E}} z_{P_{W}} \quad \text { (order dissent }
$$

3. Codespoct is

$$
\left.H_{t}=\left\{|\psi\rangle \in\left(C^{2}\right)^{\otimes^{2 n^{2}}}\left|X_{v}\right| \psi\right\rangle=Z_{p}|\psi\rangle=|\psi\rangle \forall P, v\right\}
$$

So, it is common t eigenspuce of all vertex and plaquette operstas
I. Toric code codevectors and distance

Finish claim from last time:
There's a basis of At "in natural" bijection with $H_{1}\left(s^{\prime} \times S^{\prime} ; \mathbb{Z} / 2\right)$. The bros elements are equal superpositions f all cellular cycle representatives in given homology class.
Proof: Identify computational basis vector

$$
\left.\left|b_{1}\right\rangle_{2} \cdots b_{2 n+}\right\rangle \in\left(\mathbb{C}^{2}\right)^{D L^{2}}
$$

with a \mathbb{Z} / α cellular 1 -chain. That is, $\left|b_{1} b_{2} \cdots b_{d_{4}{ }^{2}}\right\rangle$ encodes a formal $\gtrless / 2$ linear combination of edges in cellulation of $S^{\prime} \times S^{\prime}$.

From last time, given $|\psi\rangle \in H$ with $\left\langle b_{1} b_{2} \cdots b_{2 L^{2}} \mid \psi\right\rangle=c_{1}$, the condition $X_{v}|\psi\rangle=|\psi\rangle$ Forces

$$
\left.\left.\left\langle b_{1} b_{2} \cdots b_{2 n^{2}}\right| X_{v_{1}} X_{v_{2}} \cdots X_{v_{l}}\right|^{4}\right\rangle=c
$$

Moreover cycles $\left|b_{1}^{\prime} b_{2}^{\prime} \cdots b_{2 n^{2}}^{\prime}\right\rangle$ and $\left|b_{1} b_{2} \cdots b_{2 n^{2}}\right\rangle$ sutisfy

$$
X_{v_{1}} X_{v_{L}} \cdots X_{v_{l}}\left|b_{1} b_{2} \cdots b_{2 L^{2}}\right\rangle=\left|b_{1}^{\prime} b_{2}^{\prime} \cdots b_{2 L^{2}}^{\prime}\right\rangle
$$

for save X^{\prime} s if and only if
$\sum_{e \in C_{1}} b_{e}^{\prime}=\sum_{e \in C_{1}} b_{e} \bmod \alpha$ and
$\sum_{e \in c_{2}} b_{e}^{\prime}=\sum b_{e} \bmod \alpha$
where c_{1} and c_{2} as in lie

Dis tace?
Recall, a code ca detect all k-quit errors if and only if it can defect all products of X_{i} and Z_{i} supported on at most K quests.
Suppose

$$
E=x_{i_{1}}^{\alpha_{1}} x_{i_{L}}^{\alpha_{L}} \ldots x_{i_{k}}^{\alpha_{k}} z_{i_{1}}^{\beta_{1}} z_{i_{L}}^{\beta_{2}} \cdots z_{i_{k}}^{\beta-} \quad\left(\alpha_{\dot{j}}, \beta_{j}=0,1\right)
$$

is such on error.
If E is a product of X_{v} 's and Z_{p}^{\prime} 's, the E acts trivially on A, hence s not an error! If E takes it outside itself, then we ca detat that because one of the X_{v} 's or Z_{p} 's will be violated.

Main issue: if E preserves it setwise but not pointwise. That is, if $E|l| t$ is nontrivial). In this case, we know from last time that Elite aust be a product of loop or dual loop operators:

If c is a loop in l-skelitan, define

$$
z_{c}=\prod_{e \in c} z_{e}
$$

If d a loop in dual l-skeleto, define

$$
X_{d}=\prod_{e \in d} X_{e}
$$

Such a product con act nontrivially if and only if its support contains a cycle that is nontrivial in $H_{1}\left(s^{\prime} \times s^{\prime}, 2 / 2\right)$.
SO_{1}

$$
\begin{aligned}
\operatorname{distanar}(A) & =\min \left\{\# \operatorname{supp}(c) \mid c \in Z_{1}^{\text {col }}\left(S^{\prime} \times s^{\prime} ; \mathbb{Z} / 2\right),[c] \neq 0 \in H_{1}\right\} \\
& =n .
\end{aligned}
$$

Toric code ca be generalized to: - $k^{\text {th }}$ homology of any cell complex

- any \mathbb{Z} / α chain complex.
II. Stabilizer formalism (after Calperbant-Rains-Shor-Sloane) Tori code is an example of a statoiline code.
Given n quits, define error group

$$
E=E_{n} \leq U\left(2^{n}\right)=U\left(\left(\mathbb{C}^{2}\right)^{\otimes_{n}}\right)
$$

to consist of all tense products of form

$$
\pm w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n} \quad \text { or } \quad \underline{i} w_{1} \otimes w_{1} \otimes \cdots \otimes w_{n}
$$

where $w_{i}=l d, X, Y$, or z
Recall $\quad Y=\left(\begin{array}{rr}0 & -i \\ i & 0\end{array}\right)=i X z$
E is a Finite 2 -group. $2^{2 n+2}$

Know if we can detect all errors from E supported on k quits, then we cans detect all errors from $U\left(2^{n}\right)$ supported on at mat k quits.
(More precisely, the stabilizer formalises presumes X, y, z each occur with some potability. However, with at too much overhand, implies ability to correct errors in other models...)

Classical warm-up
Classical $\mathbb{Z} / 2$ lined code is subspace $C \leq(\mathbb{Z} / \alpha)^{n}$.
$(\mathbb{Z} / 2)^{n}$ is of course spare of all possible states, but it is also space of all possible errors.

Error $e \in C$ if e is undetectable (C is a subspace) C corrects set of errors S If for all sit $\in S$, either $s+t=0$
or $s+t \notin C$.

In quorum setting, a nontrivial operator may have trivial effect on codespre (egg. X_{v} in tori code).
So, we look for two subgroups of E

For this to work, need S^{\prime} to be centralize, o S In particalo, want S abelian. How ca we construct?
(Compare tore code!)

$$
\begin{aligned}
& \operatorname{Order}(E)=\alpha^{2 n+2} \\
& \operatorname{Center}(E)=C(E)=\left\{ \pm I_{1} \pm i I\right\} \\
& \bar{E}:=E / C(E) \cong(\mathbb{Z} / 2)^{2 n}
\end{aligned}
$$

If $e \in E$, can uniquely wite

$$
e=i^{\lambda} X(a) Z(b)
$$

where $\lambda \in \mathbb{Z} / 4$ and

$$
a, b, c \in(\mathbb{Z} / 2)^{n}
$$

$$
\begin{aligned}
& \begin{array}{l}
\lambda(a)|c\rangle=|a+c\rangle \quad \text { bitwise adrition } \quad \text { (bit tlip enors whe } \begin{array}{l}
\text { ard } \\
\left.a_{j} \neq 0\right)
\end{array}
\end{array} \\
& z(b)|c\rangle=(-1)^{b} \int_{\text {dot produt mod } 2}^{c}|c\rangle(\text { phice erros wore }
\end{aligned}
$$

If $\quad e=i^{\lambda} X(a) Z(b), \quad e^{\prime}=i^{\lambda^{\prime}} X\left(a^{\prime}\right) Z\left(b^{\prime}\right)$, than

$$
\begin{aligned}
e e^{\prime} & =i^{\lambda+\lambda^{\prime}} \times(a) Z(b) \times\left(a^{\prime}\right) Z\left(b^{\prime}\right) \\
& =i^{\lambda+\lambda^{\prime}}(-1)^{a^{\prime} \cdot b} \times(a) \times\left(a^{\prime}\right) Z(b) Z\left(b^{\prime}\right) \\
& =i^{\lambda+\lambda^{\prime}}(-1)^{a^{\prime} \cdot b} \times\left(a^{\prime}\right) \times\left(a^{\prime}\right) Z\left(b^{\prime}\right) Z(b) \\
& =i^{\lambda+\lambda^{\prime}}(-1)^{a^{\prime} \cdot b}(-1)^{a \cdot b^{\prime}} \times\left(a^{\prime}\right) Z\left(b^{\prime}\right) X(a) Z(b) \\
& =(-1)^{a \cdot b^{\prime}+a^{\prime} \cdot b} c e^{\prime}
\end{aligned}
$$

So e and e^{\prime} commute if ad only if

$$
a \cdot b^{\prime}+a^{\prime} \cdot b=0 \cdot(\text { in } 2 / 2) \quad(*)
$$

Write $\bar{e}=(a \mid b)$, $\overline{e^{\prime}}\left(a^{\prime} \mid b^{\prime}\right)$ for images in E. e and e^{\prime} commute iff \bar{e} ad \bar{e}^{\prime} orthogonal in \bar{E} wit (A)
$S \leq E$ will be qbelion if and only if $\bar{e}, \bar{e}^{\prime}$ orthogonal for all $\bar{e}, \bar{e}^{\prime} \in \bar{S} \leqslant \bar{E}$.
In other words, S abelian if and only if \bar{S} is totally isotropic.
Egg. $\{X(a) \mid, \in \mathbb{R} / 2\}$ or $\{z(b) \mid b \in \mathbb{Z} / 2\}$.
Beware! ($*$) is a symplectic inner product on $(Z / L)^{2 n}$
IF $\quad(a \mid b) \cdot\left(a^{\prime} \mid b^{\prime}\right)=a \cdot b^{\prime}+a^{\prime} \cdot b$, then

$$
(a \mid b) \cdot(a \mid b)=2 a \cdot b=0
$$

Centralize of S is exactly the preimage of 5^{1}
(Note: $\bar{S} \leqslant \bar{S}^{\perp}$ if \bar{S} is isotropic!)
Let codespue le

$$
\left.\tau^{\prime}=\{|\psi\rangle|e| \psi\rangle=|\psi\rangle \text { for al } e \in S\right\} \text {. }
$$

Define the symplectic weight of $(a / b) \in(\mathbb{Z} / 2)^{2 n}$ is $\#$ of nonzero pares ($a, b i$) when we write

$$
(a \mid b)=\left(a_{1}, \ldots, a_{n} \mid b_{1}, \ldots, b_{n}\right)
$$

Theorem If $\operatorname{dim}_{2 / 2} \bar{S}=n-k$ is isotropic wot symplectic Form, then A^{t} is a α^{k} dimensional code with distance

$$
\alpha=\min _{v \in \bar{S}^{+}-\bar{S}} w^{f} \text { sym }(v)
$$

