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Meeting :

O
. Welcome

,
logistics , & surveys

T
.
Course overview

- go

II. What is a manifold ?

HI . Why are 3 - dimensional manifolds special?

Next time : Invariants of manifolds , and different

encodings of 3-manifolds
.



III. Course overview

Goats :

- Understand the basics of quantum computing , computational complexity,
and (geometric) topology (especially knots and 3-manifolds) .

-- Build a precise picture of the role of topology in quantum computing ,

especially as a source of quantum error correcting codes and potential

hardware applications via topological quantum computing .

• Develop analogies between reversible circuit models of

computation and topological invariants
, especially those determined

by topological quantum field theories ITQFTS) .

- Review the state of the art in the complexity of various topological problems



Practically
,
we will go backwards : topology first, then CS

, then QC.

I'll lecture for several weeks
,
and eventually we will transition

to communal learning .



It. What is a manifold ?

A topological space that has a reasonable
,
constant notion of

dimension
, so every point has a neighborhood that looks like

a neighborhood of a point in 1km .

More precisely ?

Topological manifold of diversion n : Topological space M
" admits

an open cover { Uday. together w/ coordinate charts
,
what

are homeomorphisms ka : Ud→ Va , where Hh is an

operationIRN .

Open balls

Typically also assume M is Hausdorff and paracompact. - -

problem for computability : Home of Nh) is gargantuan .



Recall : the atlas of charts { % } determines a collection

of transition maps y
,→ p

: yafuanup )→9p Non Up)
"

Better
"

manifolds are formed by

requiring better conditions on all

of the transition maps .

µ B E.g . the topological manifold M is

"of equipped w/ a smooth structure

¥E# if we pick an atlas of charts so

¥' r
. VpVy µ Bogus that every transition map is 9

9ohmUp) smooth function
.



Take -away : a topological manifold might have different

smooth structures
.

Even smooth manifolds are too complicated to feed to a

computer .

The "correct" type of manifold for inputting to computers is

piecewise linear . After massaging the transition maps, we

can feed them to a computer .
But we can go further ! We can triangulate ! Moreover

,
we get

special types of triangulations.



More precisely , every PL manifold is PL homeomorphic to a

simplicial complex w/ condition that the link of every Vertex

is q PL - sphere .

A impulse is a set of vertices Vtogeher w/
a subset CE PM) that is downward closed .

✓ = { a ,
bind } a

.

dree Ea .# c} , Ibid's} b c

C- Peas, is)uPfEbid3) )
and



Meeting 1.2

I. Triangulations of (compact , PL ) manifolds
It .

.

Byas :c questions , and why dimension 3 is special
TI ine permitting : other encodings of 3-manifolds

,
knots & links

Next time : complexity theory



I

I. Triangulations
Recall our claim from last class : every fcompact) PL
d.manifold is P±eph to affinity d - dimensional simplicial
complex s-t . the link of every vertex is a PL d- l sphere .

Wcatch a simplicial complex a triangulation off a
Man: fo

Link of vertex v is the union of all simplices
T such that T and v share a simplex , but I

and u are disjoint . %
,

• lb
. key = :* off•_•¥Y•



PL Homeomorphism
A homeomorphism f : M→N is aP¥ if

in all coordinate charts off the PL structures of M and N)
,

F is a PL homes b/w open subsets of 1/24 .

Two triangulations are combinatorially equivalent if they
have isomorphic refinements

.

mm← e.g .

Let Ti be a triangulation ofMi , 5=42 .

Then M ,
and Mz are PL

homeomorphic if and only if

T
,
and TL are combinatorially

equivalent.



Example Every L - regular graph is a triangulation of a (possibly
disconnected) t - manifold .

•_•Ib•N I two copies of
S !

o.VN
Example Every L -din. simplicial complex where each edge

is contained in exactly 2 triangles is a triangulation of a

surface (jur face" =
"

2 - dimensional manifold
" )
.

-MT..

.gg.
←

-

'

of



"""""" "

÷÷÷i:i : :
L . PL suspensions .

K

<••iiiiAN¥o#•&
THAT IS NOT A link (RKlink R) - KsPHERE#
Sk



Warning A simplicial complex may be homeomorphic (but not
PL homeomorphic) to a manifold

,
even if the complex is

not what we're calling a triangulation .

Doublesuspensiontheore.my If M is any d - manifold

that has the same homology as Sd
, then the

double suspension of M , 52M
,

is a topological

dt2 sphere .



Manifolds with boundary
In defih of manifold

, just replace Rd with IRD- ' X fo , o) .
"⇒

.

to - - -

triangulation of torus w/
one boundary component

For triangulations of manifolds w/ boundary , the links

of boundary ports should be d - l disks
.



Standing implicit assumptions
Abuse of notation :

"manifold
"

will often mean

"

triangulation of a

(closed , compact , orientable ) manifold .

"

But sometimes not .

If unclear
, please ask !



It
.
Basic questions , and why D= } is the best to me)

If we want to use triangulations of manifolds as input to

computer programs designed to calculate properties of manifolds,
at the very least

,
we would like to recognize when

a

simplicial complex is a valid triangulation .
How would we do this?

Work recursively and "down " from d all the way to 0.

Pick a vertex V and calculate link fr) .

The
- determine if lakh) is a fd - t ) - dimensional triangulation .

If not
, stop . If yes , then decide if tinkly is a

d-I

sphere . If yes , move to next vertex. Repeat.



The curse of un computability#
Given a d-manifold

,
is it a d-sphere?

Ginger simplicial complex, is it a triangulation?
⑥ fi) - dimensional d -manifold house 0

.ftp.reecognitiontiangutioneognitioe
O

easy easy easy
1 easy easy easy
L

easy
't

easy easy
*

¥ !÷÷÷÷!. it
.

÷
.

L L
ft) : first decide if 2-manifold; then compute H** using SNF on d , cellular
(t) : will discuss next week boundary

map .



Other nice things about 3-manifolds
Moise 's Theorem In dimension 3

TOP = PL = DIFF .

2

Poincare conjecture true 3 T =P =D

If M is has homotopy 4$ TEP =D
groups of S3, then ME

53
. 51 :

IT 61 :

Geoanetrization ! 7) TEPE D
exotic
sphere?. .



Meeting 2.li Other 3 - manifold encodings
I

. Heegaard splittings and diagrams

II. Knots and links : stick presentations and diagrams

II. Bridge position , braid groups ,
and trace closures

Skipping for now : surgery presentations of 3-manifolds
Next time

'

: structure of 3 -manifolds

Announcements :* office half hour on Wednesdays , 3:30 - 4:00 .
w/ option to go extra h If hour

- class will end today at 3pm .



I
. Heegaard splittings and diagrams

A hanyo¥g is a 3 -manifold homeomorphic to

a regular neighborhood of a wedge of g circles in IR ?
-

⇐÷÷⇒¥÷÷÷÷:÷÷:::÷::÷:÷÷.
is an embedded surface SEM of

some genus g such that Tutting M along S
"

results in two handle bodies .
"

Cut Malory S
"

means
"

M - N°15 ) ."



Lemmy Every fussed
, orientable ) 3-manifold has a Heegaard

Surface. . More precisely , if T is a triangulation of a 3-manifold
,

with t tetrahedra
,
then T has Heegaard surface of

genus
= # TA - # Max Tree (Td) .

T
Y

'
-

- one skeleton

Remake : the genus will typically be way bigger than

necessary . We define genus (MS) to be the minimum

genus
of all Heegaand splittings of M .

genus (
Ms) is an invariant .



Prootbypicture
For Heeg and surface

,
let 5=2NIT ')

.

We need

• to check that each piece of

AF. :÷÷÷:÷÷÷÷÷÷i.free in Ho to get a homeomorphic

•
manifold . By Construction the 3 -manifold

is a wedge of #Y' - #Mateen)\ many circles
.• THENIT ')



Note that H
,
- T - Hoo has boundary S .

To see that it is a 3-manifold homeomorphic to

• a regular nbhd of a graph,
""" "t " " ""**

• of T. D¥i¥*
• p



We want to recover a
3-manifold from

a surface fwbrh
will be the Heegand splitting) x finite amount of
extra data

simple closed

Defies call a collection ofnerves c , ,Cz , - - . 1cg on a gens g

surface S a complete disk system if :

i) Ci 's pairwise disjoint
its S - c;

is connected
.

Theory let S be a genus g
surface with a complete
gyration

-

preserving
disk system a , . . . , Cg . Then , up

to homeomorphism rel S,
there is a unique handlebody H with 24=5 such that

each Ci bands an embedded disk.



Sketchpad : """'

T.ws?axao n
" over.

is iowF¥%
,
D= DIE-HB



Then Do (s -N) is a 2 - sphere.

Up to orientation preserving isotopy, there is exactly
one way to glue a 3- ball to Dufs- N) .

D



Corollary Every closed orientable 3-manifold can be

presented as a Heegaagrm ,
which consists of

a surface S of some genus g , together w/
two complete disk systems on S.

In fact
,
S can be triangulated and each curve in the

disk systems is a normal curve .
Mr



Examine

→ S3

→ S3



Meeting 2.2 : More on 3 - manifold encodings
I

. Normal curves and Heegawd diagrams
II. Knots and links : stick presentations and diagrams

Next week : I. Complexity theory ( not structure of 3-manifolds
2. Example problems for 3 - manifolds and their complexities .



I
. Normal curves and Heegawd diagrams
Last time :

corollary Every closed orientable 3-manifold can be

presented as a Heegaagrm ,
which consists of

a surface S of some genus g , together w/
two complete disk systems on S.

In fact
,
S can be triangulated and each curve in the

disk systems can be made a
-



More examples :
52×51

-
I

A-
ISIS '

# Saxo

hw
52×5 ' F)

green curve bounds
disk on both sides

corresponds to a 2-sphere

embedded in µ



Connect sums of manifolds
-

:

let M ,
N be two orientable 3- folds (connected) .

Pick me M
,
new . Let

m
'
-

- M - Bernt , N
'
-

- N - Bert
M
'

and N ' each has a new 5 boundary compact .
B/c orrntable

,
we can identify two copies of S2 in a

unison"#⑤@⑦



Let M#N be

M ' U N
'

2mi -52N '

Conversely : a 3-manifold L is a connect sues

precisely when there exists an embedded 2-sphere
5cL sit . neither component of

L - S2 is a 3- ball .



More examples : every manifold with a genus one

splitting is called
a lens space

:

(3,2 )

÷
. . . ... . .

Any Min .

£!÷T⑧g - ssified
up to homeomorphism

← Non - homeomorphic lens spaces
I can be homotopy equivalent .



Let 's compute something :

b .

.

. . B

i. van
( = A WB An B -

-

stirs '

,
A- IBE Sirsa

Mayer - Vietoris sequence

H
,
( A - B)→ Hilt ) Her B)→ H

. ( L ) → 0
Ill 113 111

270-27 s¥ ot E → 27/3
"

moths foil



NII!
"

she
a triangulated surface . A curve 8 is

normale (Wrt T ) if every segment in T- T
'

has its endpoints on distinct edges of Td

"



Normal curves

Up to isotopy in T - Yo , a normal curve is determined

"

÷÷÷÷÷
.



Normal curves

The set of (isotopy classes rel To of ) normal curves
is a polyhedral cone in 27 Edges

.

Claim :
a vector v c- Deff" determines a normal curve

if and only it , for each triangle TET, the

three corresponding entries of v satisfy
'

triangle

equalities
"

.

'¥



Meeting 2.2 : More on 3 - manifold encodings
I

. Normal curves and Heegawd diagrams
II. Knots and links : stick presentations and diagrams

II. Bridge position , braid groups ,
and trace closures

Next week : I. Complexity theory ( not structure of 3-manifolds
2. Example problems for 3 - manifolds and their complexities .



Warning
Triangulation → Heegaard diagram easy , but

converse is usually expensive .

Robley : a normal curve vector v e z Ses

can encode a curve that is exponentially long
in the size of V.

:÷:÷÷.
.

highly compressed
"



Deciding homeomorphism from Heeg -arid diagrams

Rei demister - Singer Two Heeggad diagrams

represent homeomorphic manifolds if and only if they

can be identified by a sequence
of elementary operations.

1. Isotropy
←

2. Handle slide ←sV



3 . Stabilization

⑤Eui
destabilize



II. Knots and links : stick presentations and diagrams

A knot is a continues injection (embedding )
K :S '

→ 1133 for S3) .
Often

,
conflate a knot 6K with its image .

When are two knots equivalent?

One wrong answer : isotopy .
Recall

,
two maps Kil

: S ' → IRS are isotopic if
there is a continuous function

H :S ' Ead → IR 's

such that H/slx{o3=K and HIS 'xEB=L
,



and Hf- it) for any fixed t is an embedding .
Why is this wrong?

iii. us:.
the interest.IT/1s.top.. . can make knots trivial !



One correct definition : ambient isotopymm

K and L are ambient isotopic if there exists

H : 1123×10,13 → 1123

Such that

i) H f-it ) is a homeomorphism of 1123

ii ) H f- co) = N3

iii ) Hffkfxl , 1)
'

- Lex ) for all + es !



Another correct defection : Homeomorphism !

Say K and L are homeomorphic of there exists

h : K€1123
such that hfkfx) ) = Lhs) for all XES !

Two definitions ALMOST identical :

every orientation preserving homeo of 1173 for S3)
is isotopic to the identity .

Ex : g us ⑦ 9:17:11 :*,



Meeting 3. I

I. Knots and links : stick presentations and diagrams
It

. Bridge position , braid groups ,
and trace closures



I. Knots and links : stick presentations and diagrams

Recall
, a knot is a Cts

. embedding.
K : S '

→ S3

A knot is tame if it comes from restricting gg embedding
Nfk ) : sixD2→ S3

via NIK ) IS 't fo) .
"

Tame
' '

=

" Has a tubular neighborhood
"

A knot that is not tame is called wild .
>

Any knot k that Extends across a disk is an unknot .

That is if the - e exists as embedding T : D2 → S3 such

that TIDD - = TIS '
- K .



WILD KNOT

• IL

found by Fox
.

why not tame?



Tame knots are always isotopic to PL thots

"

"
"

"""""



Stick presentations ad triangle moves

A stick presentation of a knot is a sequence of

pants Po , P, , . . . , PL -- Po C- 273 ER's ES 's
so that

for all g. j
-

- Oi . . . , L - l
,
the line segments

Pipit , and pig .Pj+ , have disjoat interiors and

P; this ..



A triangle move is a elementary isotopy between

two stick presentations:
Qi# ' Pix,

P •
• it ' Qi

→ •hµ④
"

• •

P ;
Qi - G.



If Q is my port on 273 such that

the tangle P
;
Q Pit, is disjoint from all at

the other sticks
,
then two stick presentations

related by a triangle move represent isotopic knots

theorem Two stick presentations represent equivalent
knots fanbier isotopic ) if and only if they are

related by a sequence
of triangle moves .



Diagramsasddeidemeisterw.ae#
A diagram of a knot is an embedded planar graph
with extra information at vertices to encode crossing information

.

This plasm graph should come from a regular projection

of a knot K in 1123 onto a plane .-
- Require pre image

of every point to have at most 2 pants
- Also don't allow -We're forces all

crossing singularities to
be transverse



Diagrams and Rei demister moves

The Two knot diagrams represent equivalent knots if

they are related a

sequence
of Reideeneeistrr moves:

Type I

Ty For TIMMY
⇐ Damp



Type 't

f)(←§
Type II (bra:p relation)

.
.

.

.

i
.

.
.

i. !

←

i
:

"
-

I
,

"
u



II. Bridge position , braid groups ,
and trace closures

A knot diagram is in Bridgeport if, when
considered as a subset of

xy - plane, all of the

Maxime occur at same height , and all of the

minima
- - r-

--
- -

.



Proposition Given any knot diagram ,
we can easily

find a equivalent diagram in bridge position .

"

.

"

m.



Artis's braid group

Bn is the braid group on n strands
,
which

is presented via

f; of =p. q. if Ii - jblBu -

- (01,021 - - -

s On - I kiting.

- Ama. AH
-

We can interpret a string
of oils as a picture of
a braid ; the relations ensue
that isotopic braids are considered
equal elements of the group.



Ey Consider 0
, -020398,

' '
in By

Convention :
"

Right to left
"

Bottom to top"

* % l l X l l a

oil = I ' %
I
'

k l l l X a

÷.. I %÷¥
..
! ! :p"

corresponds to isotopy of braid diagrams.



Given any word in the generators of B,
we can draw a braid diagram .

Furthermore
,

if n
-

- 2K is oven
,
the following three

pieces
of data give us a diagram of a knot in

bridge position :

1. Cups (a planar matching of the 2K strands)

2. Caps (ditto )
3. A word in generators of Bak .



Warning : Previous recipe might yield 9

link diagram instead of a knot diagram .

Alternative construction : Trace closure
.

Given braid word WE Bu
,
do this ?



Tuo trace closures of braids represent equivalent
links when they are related by a sequence of

ti:c:*::c.it : in
2. Stabilization :

④yym 174



µ
like Reidewester

2. Stabilization :



Meeting 3.2 : A smattering of complexity

I. Decision problems , counting problems , and computability
II. The usual suspects : RFP, NP, PSPACE , EH , # ,

ER
,
R

,
RE

TI
. Reductions and hardness



I . Decision problems , counting problems , and computability
A decision is a function Yes

"
L : { 0,13 't -- U { oink- {

"

o
, I}

K ? I No

A countingproblem-i.es a function

f : { 0113 't → {0,13¥ IN
,
in binary

"

Rema the domain of a problem , namely {0113¥, is
typically an encoding of some interesting combinatorial'ted
mathematical object .



Typical we don't care too much about details of

how to encode a
" combinatoriali.ed mathematical object

"

into

a bit string , so long as
:

I. The encoding is
"

efficient
"

2- Deciding if a bat string represents a valid object is

easy .

Exampled : we can encode simplicial complexes in bit

strings in such a manner

Narexainplei. We can not encode triangulations of G- dimensional

PL manifolds in such a fashion .
①



Before doing complexity , we need to understand

computability .

Turing machines are one way to make
"
algorithms

"

precise .



Turing Machines def 'm from Arora + Barak 's
"

Computational complexity
'

Each tape

←
K -- # of has aits

Memory
own

tapes
"Reed -

write
"

head that
moves

Left + Right



-DBB/l/o/µ]--←
'

input tape

DMt.FI#orkt.pe
T## output

Each tape has a

"

read -write head
"

that
move 6 left or right



This is an important model , with some arbitrary

choices
.

Church - Turing Thesis : Eoenpufable
"

does not depend
on model of computation :*

Extended Church - Tuning Thesis :
"

Efficiently computable
"

does not depend on
the model of computation,

as long as its "

realistic
"

.

Problem : Quantum computers .



It
.
Usual suspects

A complexity class is
any

set of (decision or country
problems. Typically interested in complexity classes
defined by restraining the resources used by a

Turing machine (space , time , etc . . . )

We 'll start at the Top .

"

RE : recessively enumerable decision problems .
LE RE if there exists a Turing machine St .

For all x C- {0,13¥ , if Kx ) - Yes, then
the Turing machine returns Yes when input x
and enters the "HALT

" state .



Example : Halting Problem
.

Given a Turing machine T, deference if

T halts when ainput an empty string .
In NE because we can build a Tory machine

that runs other Turing machines inside of it

(Universal Tung machine)
Example :( Henuonrphiuu problem for PL - manifolds)
L : foil)

"

x { 0,13
#
→ { Yes , No}

( (x , y )
= { Yes if x and y represent triangulations of PL

manifolds that are PL - homeomorphicNo otherwise
.



CORE : same as RE but swap role of YES and No .

R : recursive for coyotee) Forties , defied by

R -- RE nooRE
Intuition : a problem is in R if there is a way to solve

it algorithmically, but w/ who bounds on resources

required .



Non - examples
: Neither Halts Problem no- Homero

.

-

Problem for PL-manifolds is in R
.

Example : 3- Manifold Homeomorphism Problem

L : { 0,13*+80113
#
→ { Yes ,

No )

Lex
, y )

-

{
Yes '

' tiny regIY.mn?:gggrh-c
No otherwise.

Why ? Geanetrization .



Meeting 4. l in A smattering of complexity , continued

II.
The usual suspects : RFP, NP, PSPACE , EH , # P , ER ,¢RE/
It

.
Reductions and hardness



Note

PENPE PSPACE E Expo. ER ER C- RE

§ I
d- * *

Expect these
are all strict

ER : elementary recursive functions
.

To unpack , let's

have TIME (frm ) ) be all decision problems that
can be solved on Turing machine that runs in time

Off rn) ) , where n is the size fire . length ) of input .
Likewise

,
can define SPACE (frm ) ) .



Then

ER = U TIME ff!
""

)
KH w

k

Nice exercise :

ER = ¥
,

SPACE 4225
" " )
-

K

( SPACErent C- TIME ( 2h ) )



EI 3- Manifold Homeomorphism ( Theorem of G .

L : {0113*+50,1} # → { yes
,
No}

kupergbloeng)

( (x , y ) = { Yes if x and y encode houseo
.

3 -manifolds
No otherwise

Why ? Geometrize tin: every 3-manifold can be cut up

into
pieces in a canonical way so each piece can be

endowed with one of 8 Thurston geometries

(E3 ,
S3
,
HP

,
. . . )
}

Idea of algorithm : geometrize x and y in parallel , the-
Compare their geometric pieces .



EXP = U TIME ( sik)
-

I 201601yens)
KZI

PSPACE = U SPACE fuk)
KII

PSPACE f Ee XP (Note : if we need press space

for a algorithm , the Turing machine running the algorithm

ca- be in at most 012PM) possible configurations .)

P = U TIME (n 't ) . If a problem is in R we

KH consider it efficiently solvable ..



NP : nondeterministic polynomial time .
We say LENP if there exists TM M and two

polynomials pros ) , g- rn ) such that for all input x
to L of length n :

I . If LAI - Yes , then exists ye { 01137
" '
such that

Mfxiy ) - Yes .

2 . If Lex) -- No , Mfxiy ) #o
for all ye{01139-41}

. May ) runs in time pH for all
ye { 0,139-7.

For such a Turing machine
, we

can call the

YEE 01137M
"

proofs
"

or
"witnesses

' '
or
"

certificates .
"

(They are not trustworthy , and M tests their credibility .)



Fergie SAF f-Boolean satisfiability
"

)

Instances of SAT are Boolean formulas
, e.g .

¢ vyvzsnrxv - y ut )
problem : given a Boolean formula fly , ,y2 , . . . ,Yn ) ,

decide

if there is a input such that f evaluates to /

(or -- True
"

) on that input .

Why is SAT in NP? Take the different possible

input to f as the certificates
.

If SAT (f) = Yes , the- of course some input to f evaluates

to True .

And of course if SAT (f) = No, no input will
fool the procedure .



Exe Graph 3- color ability

Instance : Graph P
, e.g

. as adjacency matrix

Problem : Decide if f has a valid vertex 3 - coloring .

Witness : p
: VM)→ ( Rio , B}

Given a witness
,
we can quickly verify whether or not

it yields valid graph coloring .



.

sit::÷:÷÷::: so:÷.
-

age, ?
or just 1 . Also require that we use all

*.ae#i...*..



.in?EEhIto?:?p
: { arcs } → { 12,6 ,

B}



If. Reductions and hardness
gals.
"

polynomial time many - one
")

decision
Given two

, problems L and K
,
a harp reduction r

is polynomial time computable function such that

for all XE { 0,13¥ we have Lex ) -- Kerry) .

{ 0,13×-5 { Yes
,
No }

rt
{ 913¥

Such an ¢ is a reduction from L fo k.
We interpret K as being at least as hard as L .



Another type of reduction
c-

:

polynomial - time Turing reductions laksa
"

Cook reductions
")

Given a problem K
, an oracle Turing machine for IT

is a usual Turing machine
, together w/ a black box

that solves instances of K in one time step .

PK = all problems soluble in poly town on a Turing
machine w/ oracle for K .

We say L is Cook reducible to K if LEPA
.

Karp reduction ⇒ Cook reduction
,
but not converse .



A problem k is NII if for all LENP, there exists

- Karp reduction from L fo k
.

If
,
moreover

, KENP
,

we say k is NP-complete
2-

-

NP - complete
"
"

in Nr
'

+
"

NP - hard
"

NP-hard is transitive under Karp reduction
.

theorem)

SAT is NP - complete .

So is 3-SAT



Ey (de hesmay ,
Rick

, Sedgwick , Taseer )

Trivial sublime problem is NP-complete .

Instance : a link diagram L and natural number n

Problem : decide if L has an n
- component unlink that

is a trivial link
.

g-
e.g . O O O



fdroofstetch Reduce from 3-SAT

→ NNeedt÷
Brain;;

-

←
erase leggy Io is satisfiable

I O O l l l if and only if
z a

z Z DIO has anConvert Io to link diagram
µ - componentDIO and m

-

- # variables in Io
sub unlink .



Meeting 4.2 : The complexity of unknot recognition
I. In NP via normal surface theory (Hass - Lagan's, - Pippenger, after Hated
It

.
In NP via Reideneiste - moves hacker by )

TI . In coup
, modulo GRH ( Kupperberg )

II. In CONA (Laeken by )

Next week : quantum mechanics and quantum computing



Problem : Unknot Recognition
Instance : knot diagram K

Questions. Is k the unknot ?

K is an unknot if :

I . it's equivalent under a sequence
of Reideenesst- r moves

to a diagram Yat crossings
2 . if K bounds am embedded disk

3 . it, ( S3 - K) =D ,
infinite cyclic group



I . In NP via normal surface theory (Hass - Lagares - Pippenger )



Given T, triangulated 3 -manifold , we can describe
"

normal surfaces
"

using certain vectors 277T
, where

t is # tetrahedra in T .

Inside each tetrahedron T, we have 7 types of elementary
disks :

→ .
T

3 EE

.
. o

-
-

ri

handsi ¥7
-

¥¥¥
" 2



A vector ve 277T determines a normal surface if
• Vi 70 for each i =L

, .
.
.

.
7-t

ooo.
"

matching condition
"

for each pair of faces that are

glued together of the form

Vin
,

+ Vi
,

= Uh
,

t VR
,

•

"

quad condition
"

: for each tetrahedron , see at most one

quad type



• I
• .

o
r

'

÷÷÷÷÷÷÷÷:-. i

-

-
. -

-¥¥**.
DO y *

'

as



Basic idea : effective' zing Haken 's normal surface theory
I
. Given k

, a
knot diagram with a crossings , can

build triangulation of Mh :
'

- S'-Nfk ) in time 0k log n )
with t -- Orn ) tetrahedra

,
in standard way .

Certificate A vector VE 727T
,
and a list of ft - I

me

:

linear constraints , with u ;
E Ltt - l

L .
Test that v encodes a normal surface by verifying
it satisfies :

•

"

matching equations
"

}
Define Hakeem 's normal

! positivity
: v;

20 fit
,
. . . ,7t

'"e Cm in 11277

quad conditions
"

←Nahear
,
but easy to check



3 . Verify the 7-t - I dine. - constraints are independent
✓ satisfies them

,
and gcdfvi , -Nyt )

-

- I . This shows

v is a

"

vertex minimal
"

integer point in Cn .

4. Vertex minimality ensures V represents a connected

normal surface . Now check v represents a

disk compute X) and has correct boundary
on 2Mk= 5×5 female Dv) - fo , 1) c- Hal 5×5 )) .

Procedure works by theorem of Jaco - Tollefson saying if K is

unknot
,
it has a vertex minimal dish . HLP shoved there

exists one w/ u;
E 2*-1

.



'



it



It
.
In NP via Reideneiste - moves hacker by )



Subtle warning :

( no::÷÷::::
moves is

NP- ha
-d

.



TI . In coNP
, modulo GRH ( Kupperberg )

Opposite question fknottedne.rs detection)

Instance : knot diagrams K

Question : Is K Not the unknot?

-

←
Problems in here are

believed not to be NP- hard.



T
⑦Ip i. e. image of
\ Pe is no- abelian

.



II. In CONA (Laeken by )

2020 preprint



Meeting 5. l : Quantum Mechanics

I . The postulates

section 2.2 of Nielsen T Chuang



I . Postulates of quantum mechanics

1 . What are quantum states?

2- How can quantum states evolve over Here?

3
.

How do we measure quantum States and how are

quantum States affected by measurement?

4. What do composite systems look like?

The axioms specify the mathematical framework for answering

these questions .⇐.

The work of a physicist is to understand
,

for a specific system , what the specific mathematical objects are
.

We will take a practical , mathematical approach to the axioms,

and ignore (at least fo. now) their physical justification (e.g , Bell .me#ditioD



Dirac bra - Ket notation

use

{rotation
fo.

arbitrary
linear maps



I . States are vectors in a Hilbert space complete
k

"

pure States
'

Often
,
but not always, a state space also has a preferred basis

("computational basis
")

Warning : Unlike in classical computing
a state is not a list of coefficients ! The

coefficients can be computed ,
but we will get to that . . .



Examples qubits , qubits , fupits, audits . . .

A qubit is any quantum system w/ a 2-dimensional state

space , typically with a preferred basis
.

In other words
,
ft = spam ¢ { 107 , Al) } is a qubit
-
o - thornornnal basis
(so to>¥-0 )

Quint : E3 -- spa- { 107,117,12$

Qupit : GP -- span { 107 , - . - ilp -173 , p prime

Quat : Ed - span { lol , - - i , Id -173 , any d
.



Amplitudes If 107, - - n

, Id - D is an ONB and

d- I

147 [ ai Ii ) is any nonzero vector
, we

i=o

call the ai's funnormalized) quantum amplitudes .

Normalizing and projectuvizing
If 147 is not unit length but is at least nonzero,
the- H)
era is a state .

thx
We 'll see shortly ,

that scalar multiples can 't be distinguished,

mixed states
so we could define state space as projective space .

These are classical mixtures of quantum States.



I . Time evolution is a unitary transformation

µ
.. my, ,µ , ma , we, , .my

"

Global version

onsite in
time for
us



Examples of unitary time evolution for a qubit
(07 IN

Iwf ! ;) * f.
'

o ) Z - to :) Yah?
IN

-
Pauli operators

gtl
-

- tf f f f ) bit flip
"

nottw.im#-H for
"Hadamard

,

" X l l) = 10) , X fo> =/ ,>

Z called "(relative) phase flip
"

(no classical analog)

2- 107=107 , 2-117=-117
,
2- I ) -

- low
ra



Hamiltonians and energy eigenstates ( i. er, eigenvectors of Hermitian operators)

A Hamiltonian is simply a self - adjoint operator H .

(Ht -- H )
,

intended to encode the energies of

States.

Eigenvectors are called
"

energy eigenstates .
"

Recall : H is diagonalizeble with real spectrum .

The eigenvalues of H are the
"

energy levels
"

of

the system .



Differentiate

Global
-

Infinitesimal
versionT version

Integrate ) solve Schrodinger equation

If it dl4HD
If

-

- H HAD

⇒ dixit)) unitary !

It
= -

lifts) I

⇒ IT ⇐ lot- ifIixEDdE= 4029



3
. Measurements are certain collections of linear operators ⑦HK)



Example : Measuring a qubit in computational basis

Mo -- lo > rot = ( '

ooo ) , Mr. 117511=189)
407501) ! Do>fetoscope -- Iota

Note : Mot -- Mo -- Mod and Mf -- M
,
-Mf

but this need not be the case for general measurements .

Completeness equation follows immediately
E.
g .
H) -- ¥ (2107 - 311 ) )

Prob 147 winds up in state 1 : IF IT) does wind up . - state 1 , the,

its state is

feminine -_ Hmm { If:&!?⇒ 's ID
.

I
e

-
-



Measurements can not detect global phase

Mm measured on 147 us . e' 014) :

(eiolyy )t= FYI e-
" O

so

IT Mmtmmefk7-htlmmtmm.IT
Take-away :Since measurements car 't distinguish
scalar multiples of. state , we should consider

them physically indistinguishable .



Measurements can reliably distinguish orthogonal vectors

Given orthogonal normal States th ) and Ha) ,
we can prepare measurements

M
,
= 14,7541

, Ms - Hn> ( Tnt

and Mo = I - M .

-

Mz .

You can check that the probability distributions

are
:

xp. q-qgg.TT ft
Ssg

Atto
0 I 2

0 I 2



Measurements can probabilistically distinguish independent vectors



3! Measurements can be understood from
"

projective measures
" #KK)



Statistics are easy to extract from project:-e measurements

Expectation value of M in state 147 :

KEIM ) -- {mph)
- §rmhtlPmH7

Standard deviation :
= (4) Gm Panty)

Sfm )
= MITT .

- Elm)2 -Ernst IM ht ))
'
- helm -147

Heisenberg uncertainty : begs ¥
THED) 1471
2

Proof: Use Cauchy - Schwarz . . --



Examples

Pauli operators ! Every Hermitian operator on Q2
is a IR - linear combination of Pauli operators .

• It bXtcYtdZ

Hamiltonians are energy observables (that's why they control dynamics)

Allow us to answer questions like :
"

Given state 147
,
what is the probability

it has a certain energy ?
"



4. Composite systems are tensor products

If system A described by Hilbert
space Hy

V

B
"

HBI
the
- the composite system AB is

Hag HA Hp .



Curse of dimensionality (blessing ?)

State space of n qubits is

Ghor . - - ⑦ E - =
Am

in

a
times

dimension is 2 ?



Difference b/w mixed states and

entanglements .

If ly) E Ha HB
is NOT of the form

ITA) 014037, we say
147 is entangled .

A windstorm in H is gin by Easily

operator
"

MontminyA B

BIH) I mixed states a

$ T algebra of operates



Meeting 5.2 : Digging into quantum States

I .
"

Completely understanding
"

a quantum state

IS . No cloning

II. Distinguishing States , redux
HIT

.

Some good news : the Deutsch - Jo Zsa algorithm .

Next time : Quantum circuits as model of quantum computers,
and BQP .

Note : l 've given up telling myself l 'm
going to Tex

separate notes .



Summary of axioms of quantum mechanics :

I . States are nonzero (unit) vectors in a Hilbert space.

I . Physical transformations of closed systems are unitary .
3

. A quantum state 147 and measurement { Mo, . . . ,Mk }
determine a probability distribution on {o, . . . , t ) .

4. Composite systems are tensor products.



I.
"Completely understanding

"

a quantum state
In classical computer with an n - bit memory register it is easy to read off

information that completely determines the register 's state : just read each

each bit one after the other
.

This is NOT true of quantum systems .

Suppose we have an n qubit system (thought of as a quantum
memory) which is in a state 147 E µ?

How can we convince ourselves we completely understand

147 ?

It depends on 14) and what we mean by
"

completely understand
.

"



One idea : determine all of the coefficients of ly)

in a preferred basis
.

Of course , ft) can be made part of some basis,
but our

"

preferred basis
"

shouldn't depend on 142
.

For u qubits , we use the tensor product basis as

our computational basis
.

107=100 - - - o) - fo) to> ④ . . - ④ to> E jon Physical
assumption

:

117=100 - - - D - lo> ⑦ to> ox . - ion> 7%1%777*5
127=10 - - - lo) -- to> ④ .

- - ⑦ 1170107 vhejneitoffuse
÷ 4¥:: ::us

which
IN -- d) e- Ill - - - 17=1701170--0117 , where N=2

"

. one .



In principle , we know there exist aol.r.iq, E Cl such flat

147 's !& ai ti ) , f. laila =D .

How do we determine the ai?

Well , there are exponentially many !
So let's try fo - ao only.

We need to find some measurement or observable that

will help us determine ao .

Of course
,

go
= $014) , so we could try

Mo - 107601 , M
,
⇐ I - 10701 .

= 117511



With this measurement, probability of getting outcome 0

on 147 is

pro ) = YI Mo 14) (note Mo a projector)
= -4107 147
= 9¥ 90
= fault .

So
,
with this choice of measurement

,
the Best we can

do is
"
see

' ' II go It as a probability of a certain outcome
.

It turns out
,
with a little bit more cleverness , we could

determine ao itself but let 's suppose we're content

just to know the probability .
How can we

"

really
"

do that?



Well , if we make the above measurement
, either

we get outcome 0 with probability pro) = 1%12, or

we get outcom :
I with probability

ph) -- htt m ,
ht) - FYI ft -107071147=(411/4)*5410750147

= type - look
= B - 19012 .

Performing this measurement only once , we can 't expect
to determine anything beyond whether it seems, probabilistically,
that lao Kk 's or lao 12 t 'h

.

If we want to do better , we have to do another measurement!



But the first measuremet spoiled 1471!
If we got outcome 0

, then 147 has be made into ⑧ o) .
If we got outcome l

, then H) is now in state

M
,
147

prism
= union ( 147 - auto> ) . Ii )

In the first case ,
if we perform the measurement again

on the new state , we of course just get back 107.
Likewise

, in
the second case ,

m.tt#I--oimMiETt-nfI-.n*Yf .



S. if we want to understand 19012 better than whether

it's more likely that 1%12 ? K o - 1%1 - E 'k
,
we

would seem to want to have another copy
of 14)

we could measure . We need to run our measurement experiment
on 14) again .

If we had many copies of 147 at our disposal , we could

do the measurement on all of them
.

If we did so k times
,

then
,
with high probability , we can expect
^

( pp pads - # Eo

honesty 0¥ ) .

This could be made more precise . . .



Take - away
: If we have an unlimited supply of copies of 147,

we can
,
with high probability, approximate laold in binary

reasonably efficiently .

Two issues
:

Id . Maybe there's a better measurement to take?

There's not .

2
. What if we don't have

many copies of 147?

We're sunk !



It
. No cloning Sometimes : 107 will men to> On

ten short : there's no unitary way to copy future
States

. linear !

They het n ? M
.
Then there is no unify transformation

U : Gm In → Em En

such that Uf 1470107
") = 147014701070mm

For all 147 C- Em .

Prod : There can 't be
,
because

1470107 t It> ⑦ 14) 1070in -h

is not linear ! k¥7





So
, we

can only hope to
"

completely understand
' '

States that we know how to prepare .



III. Distinguishing States , redux
Instead of determining 147 completely , we might be happy
to have a procedure to distinguish it from all other States

⑥ e) (so long as he> Fei 0147 For some OEIR) .
How might we go about this ?

Basic idea from last time :
"

prepare
"

measurement

Mo -- 147541 ,
M

,
- I - 147541

.

At this measurement of 19) ever takes outcome A
, we

know

19) is not equal to 147. This procedure works
,
but

Many issues !
Can only get around all of

them is special circumstances
. . .



I
. Maybe he> = a ⑥ 4) t b) v> Raft 1st - =D
where u) -- O and Ibl - = It ⇐ Would expect to
have to perform the measurement experiment 2¥ times
before we see lie) isn't 147.

L . Just as before : need to have many copies of 14) .

3
.
How do we

"

prepare the measurement
"

147141 ?
Would suffice to have a way to prepare 14)

,
i.e . 9

transformation that takes 107=10 - - - o) to 147. Can
we

do better ?

If U .
.

Eh → Em does 0/07--147 , th.

It> here> = Uhh Utley -- lo > Col Utley



II. Some good news: Deutsch - JoZsa algorithm
ENOUGH OF THE WARNINGS !
WHAT ARE QUANTUM STATES GOOD Fold?

Dual to the moral that a quantum state stores

exponentially many classical probabilities We have the philosophy:

ENTANGLEMENT IS

A RESOURCE .

(t) : This does NOT mean we can redtiably store an exponential amount
of classical information in a linear # qubits (Holen bound)



Separable vs
. Entangled states

Given a composite quantum system

HAB = HA ⑦ HB ,

we say a state is separate if it's of the form

Ha) Hot
for some HATE HA , 19ps ) C-His .
If he> C- HAB is not separable, it is entangled .



Deutsch's Problems

Input : a black box function

f : {oily→ { oil}
which is promised to be either :

i ) constant, or

ii) balanced , meaning # f-
' fo) = # f-

'( l !

Problem : Decide whether f is constant or balanced.

Classically , requires 2h
- '

+1 evaluations off.



If we have access to
"

quantum black box function
' '

for

F
,
we can solve the problem in Consetttime !

linear?

Uf :
"

⑦ fan) n→
An
( Ea) n

Ix ) ly) t 1×70×9 yoffcxl)h

J Boolean addition
ancilla qubits of bit strings

This flips y 's first⑧ bit it fix, - I
orUI

'

=Uf .

does rotting
n

=p.



Details : (Nielsen - Chung)

entangled state



Caveats :

I
.

Contrived problem
2 .
Deutsch's problem can be efficiently solved with

high probability on a classical probabilistic
computer (meaning the algorithm can flip coins)

3
. Apples and

oranges
: "black box

"

us.

"

quantum black box
"



Meeting G. Ii : Classical warm. ups to quantum computing
I

. Probabilistic classical computing : BPD and MA

TL .

Reversible classical computing

Next time : quantum circuits
,
BQP and QMA



Axioms of quantum mechanics lead to important problems if
we want to use quantum mechanical systems to build a

computer , even in the ideal case of a noise- less system :

I . The classical information extracted via measurement

is a probability distribution
.
How

can we formalize complexity theory around this?

2. If we want to use a Hilbert space of some system
as a

"quantum memory register ,
"

the- fqumtum)
transformations must be unitary , hence , in particular,
invertible ) reversible . Is reversible computation
feasible?



Goats : answer these questions in classical

warm - up cases .

The classical analogs won It address all of the issues

in the quantum case . Erg . quantum States are not "just
"

classical probability distributions
,
and unitary group Uk) is

Uncountable, infinite .

Also important later : non - idealized quantum computing . Need
a theory of quantum error correction and fault

tolerance .



I . Probabilistic classical computing
Informally : a classical probabilistic algorithm is any algorithm

that is allowed access to coin flips , or , equivalently,
random lait strings .

Two equivalent ways to make this more formal :

I . Extend the definition of Turing machine so the transition

function can
,
in addition to using the machine 's internal

state and read of the memory ,
toss a fair coin

.

2.
"

Resolve
"

a non - deterministic Turing machine by flipping
a coin to decide how to branch

.



Remarks :

I . It doesn't matter so much if the coin is fair
,
but if

p(heads) 't 1/2 , it should at least be a reasonable number . . . .

L
. Coin tosses are always independent. So our algorithm could

do all of them at the beginning . Equivalent to choosing

a (uniformly ) random bit string , and using the bits one

by one as needed .

} . Access to coin tosses does not change
"

computable .
"

It might change
"

efficiently computable
"

,
thus violating

extended church - Turing thesis
.

4. flipping a coin counts as one time step.



A probabilistic algorithm / Turing machine for a counting

problem induces
,
for any input x , a pr

- bodily distribution

on { on a } ?
For a decision problem ,

each input x yields a probability
distribution on { Oil) = { Yes , No} .

Informally : A decision problem should be considered efficiently

probabilistically solvable if there's a poly .
time Turing machine

that gets the correct answer with high probability .



Fix a constant OLE LAK
.

A decision problem L is in

BPPE ("bounded - error probabilistic polynomial time
" ) if there

exists a PTM T and a polynomial pflxl) such that
when input x

,
T terminates in at most phxl ) steps,

and :

G) if Lex) -- Yes , then T answers Yes w/ prob. I l - E >
'

L
.

Iii ) if ( (x) -- No ,
then T answers No w/ prob. I l - E >

'

L
.

So , E is probability of a wrong answer.



Fact : for any OLE LE
' cha

,

BPP , = BPPE , .

Why?
"

Amplification of probability .

"

BPPE E BP Per ⑧buoy from definition

BPPEZBPPE , i repeat (enough times) and use

majority rule
.

Take - away
: Define BPP =BPPqz .

Equivalent formulation : BPP is all decision problems L decidable by
an NP TM such that at most 1/3 of the branches

report the wrong answer.



Variants : RP , PP

RP : same as BPP
, except if the answer is Yes

,
the

•
PTM always reports the correct answer .

PP : what we get if we set E = 1/2
.

BPPO - P . (But beware of ZPP.)



Examples : Primality testing. is in BPP vig

Miller - Rabin test .

Input : instant number N in binary)
Question : Is N

prime?

In fact , it was shown to be

in P
.



Deodorization : It's expected good random number

generators exist , hence BPP =P.



Merlin - Arthur : probabilistic analog of NP.

Has same definition as before
, except we use a BPP

Tuning machine to decide when a witness is believable
.

Name
"
Merlin -Arthur

"

is supposed to invoke a

"

game?

Multi - round (but constant ) games generalize NP for MA)
to polynomial hierarchy .



II.Reversibkdassicalcomputi#
Classically , interested in computing Boolean functions

f : {0,1}m→ { o , 13h
Of course, these are not all bijection . Is there a way

to encode f
'

inside
"

of a bijection ?

Even better
, can we do this "

locally
"

and "uniformly
" ?

First : C5AT
.

Instance : Boolean circuit C

Question : Is C satisfiable?



Mgr Boolean circuit is something like this ?

:÷÷÷÷w'i¥Cj:÷:
'" " """"

of wine # Jr ,
c : info 1¥.

Dani Dor
ft t int
o l

'
o l { 0,135

( ( 0,1 , 4011) =/ , so C is satisfiable
.



If we have crossings , can get rid w/ a swap :

* =¥¥.



(SAT is NP - complete .

(can reduce from SATI.

Size of a circuit is Off gates) .

Is there some NP - complete analog of CSAT for
"

reversible circuits?
"



Fix a gates , which a set of bijection ,

g
: { 0113

"

→ { 0,13
"

where n may vary with the gate .
We can wire gates from G to build planar reversible

circuits .

!
R : fifth ! a.

c-G
.

T
n

width 5 Da IF
a 4th tf
k : { 0,135- { 0,135.



OI : Can we find an NP - complete problems
for circuits with gate set G ?
Call it RSAT (G) - .

.

A- : Depends on G .

.

Why is this unclear?

Note
,
we can 't fix y

C- {0,1}
" and ask if

there exists x C- So , Ba such that Rft) - y ?

Why not? Because the answer is always Yes !



Let D= Sym ( { 01133) , and define RSA TCG)
as follows :

Input : Reversible circuit R of width 2k

Question : Does there exist x
, ye { oil)

"
such that

Rex
,
o
,
- -yo) - Cy , O , - - - , O ) ?
W -

k k

Claim : This is NP - complete .



Meeting 6.2 : Reversible computing and quantum circuits

I . RSAT

It
.

Quantum circuits

Next time : Soloway - Kitaev ?



I . RSAT

Last time :
a (Boolean ) gate set G is a

set of bisections

{ 0,13km { 0113k. Ck variable)
A planar , reversible Boolean circuit R is a diagram like

this :

i÷7÷¥ .ie.

''

ai:iii: : it:
The circuit is a

n=5

"

planar G - factorization
"

depth :3 of this function
.



Note : every Boolean function hot necessarily reversible)
m n x

-D= X

f : { 0,13 → {oil } x

can be built out of AND
,
oh

,
and NOT

,
FANOUT

{AND
,
OR

,
NOT} is a universal set of logic gates .

If we want to find interesting computational problems for
reversible circuits

,
G better be

"

sufficiently rich .

"

%
Lots of wiggle

00lb !



Example :

D= { F } , where F is the freakin gate :

Fred Kin =

"

Controlled SWAP
"



Given any g
: { 0,13k → { 0,13k

can always build
"

C - g
"

or
"Controlled -

g
?



Just for fun : since F is
"

conservative
"

we can implement it with billiard balls !



If we allow extra
"

ancilla
"

bits
, can encode AND, OR , NOT :

AND Rt) CROSSOVER,
NOTH

o
SWAP

0 00 Doit!! 1¥
,
¥
, tiT

I
ANCILLA



Recall : De Morgan guy
=
- fix n - Y )

pin
=

I 1

Dying



Since NOT and SWAP are reversible
, might

as well include them on G for now

G={ F, NOT, SWAP}

E-- Ed Et

X t X X

is not linear !



We can
"

dilate
"

every
Boolean circuit to a reversible

circuit
, by replacing every AND with a Friedkin t

ancilla in 0 state :
*-junk !

I '

ihi⇒ME Def( l l -i
x. n b l l l B B

x
, ta Xs O O



RS AT (G) , variant l :
G -

- EF
, summons

.

Instance : reversible (planar) G
- circuit R , with input

divided into
"

data register
"

of width d

- d "ancilla register
"

of width n - dl
,
where

width (R ) - n , and all ancilla set to 0 .

Problem : Does there exist x # {Oil}d such that

the first output bit of Rex , O, . . . ,O ) is B ?
in

M- d

Lemma RSATG ) is NP-complete .

Proof : Reduce from CSAT using dilation as on previous page .
D



If we include COPY in G ,
we can build

a somewhat less contrived variant of RSAT .

Here copy is

X-D't Y COPY is
"

reversible

/ / copy
"

not "clone
"

or

"

fan out
"

f f
l l

Fft
× Y l

(If x -- O
, Copy copies y to X .) x

② = { f
,
SWAP

, NOT, copy}



RSAT (G )
,

variant 2 :

Instance : G - circuit R with width IR ) - 2n
,
with input

divided into data and ancilla registers both

of width n .

Problem : Do there exist x. ye { Oil )
"
such that

Rfx , Oy . . . , O ) = (y , O , . . . ,O)
win win

axillae ancilla

Lemma : This problem is NP - complete .



Proof : key idea is
"

uncoenputstiom; which is

also useful in quantum computation and in complexity
results in topology . See "Computational complexity and

3-manifolds and Zomfbies "
by Kupperberg - S .)

Reduce from first variant
.

Three cases

Noth, ) Xi - - - Xu 9, 9h

Y ' Tub, by if

4 / / - - - I f - - . I

/ . - - f f . . . ) an.io

⑦ Engine thy
and apply

f- - - II . . - I
an" ITI

X
,

X
.
9 9k I - - - I / . . . I

9kt , X
,

Xu 9 9h
Case 5 : n'- KH ←

new ancilla



Case ii : n
> KH

y
'

l b d ¥0'÷÷i÷i÷÷÷÷÷÷i÷
9kt , 9k, 29N

Tevere ) more
whose

T

padding
ancilla register "



Case Iii : n L KH

till
pod.

'

. .
. / . . .÷÷: ÷÷i÷÷÷
.

The
copying

at the end is to
bits

ensure a parsimoniousreductiom.mn IT



Why uncomputati.com is relevant to quantum computing :

we might work hard to
prepare quantum state 17)

so we can do useful things with it.

Potentially
'

;÷DuI÷¥
"

se

2K y
tangled w/ the

Seim . ) junk !
i - O



Interesting question
:

Given gate set G
,
what's the

complexity of RSATIG) ?

te :
"

How powerful is G?
"

Guess : Either its in P

or
its NP-complete?

(see Schaefer dichotomy theorem .)



II. Quantum Circuits

Call a unitary transformation

U : Gto - - ⑦ Eh → 62 . . . 62

¥
a K - any quantum gate .

qualm

Any set G of quantum gates is called
an gate

set
.



Examples:
I . Any classical reversible gate

g
can be

"

linearized
' '

If
g
: { oil)

#
→ foil ) #

(Xi , - nyxk ) to His . - Yt )

Then
Hi) HKD

f - -
- - l

is.

His txt)
The quantum gate g permute,

the computational basis
of €2)

k
^

Take - away : quantum circuits include classical
reversible circuits.



2
. ( NOT fake COPY)
Linearization of ( NOT

(NOT : { 013
-
→ { 0,132

OO OO

O l H 01

I O l l

l l l O

1×0--17 ly) lxoty )
hpl l

l ¥4
I / IN

ly >
1×7 1*7



3 . Single qubit gates pie . unitary operators on Ehf
, ie .

Lie group Wh). .Hada- -d
t , = Lug ( t

, %)
Phase gates 4"

( o
'

us

&
alo ) -15117 13 910> Tetley,)

.Ix)



A quantum circuit over G is a circuit whose gates
are elements of G .

Just as for classical reversible circuits
, quantum

circuits have a width and a depth .

E.
g .

C implements a unitary

^ a
n

on E
- ④ Et ⑦ EL :

C : tf ¢ CNOT)okNotQe")

t
t k t
depth : 2 width :3



Gate set G is
,

al if (for n large enough ..)

every unitary U : ⑧ 2)
An
→ (Q2)

n

can be expressed
as a G - circuit . (Every U EU (2h) can be factored as

a product of elements of G .)
V12) t CN OT is universal quantum gate set.

In fact : phase gates t H t CNOT is universal .

"

Precisely universal
"

is overkill !

Why ? Quantum computers are probabilistic and

States that are too close can not be feasibly

distinguished.



A better definition (but still arguably overkill. . .)

flour)A gate I is quantum universal if for all n large

enough ,
"

elements of G
"

in

^

Utero . - - * aye voi)
÷

( ie . , given g EG that is binary , we get a- I different

uniforms of the form 1%2, i ⑦ g Q Id
n-mi )

generate fas a monoid) a dense subset
-

( for all E>0 for every Ue ✓ (2h)
,

we can find

a G- circuit U ' sit . U - U 'll ke . )



Let

f : font → { 0,13M
be a function . A circuit U Imputes f to

precision . ,
E EE < "a ) if for any xe { 0,13

"

GREW.HU/x.oN-7Bf ? I - e .

⇒ Fy
O . . - O

(V has width N )



Meeting 7.1 : BQP ad QMA

Is
..

BQP
, gate fin)dependence , and the Soloway - Kitner theorem

II
.
.
QMA and local Hamiltonian problem

ROUGH PLAN FOR REMAINDER OF SEMESTER

Next time : Simon 's and Shor 's algorithms
Week 8 : Quantum error correction

,
stabilizer formalism

,

and 27/2 homology
Weeks 9T : topological quantum computation and TQFT

Time
remaining

: Khaimov homology?
student talks



I
..

BQP
, gate fin)dependence , and the Soloway - Kitner theorem

Last time
,

I ended by flashing this definition (taken

from the textbook of Kit.eu et al. ) :

let

f : font → { 0,13M
T u

be a function . A circuit U softens f to

precision
.

E (OE E ' "a ) if for any xe { 0,13
"

2 - l

EINEN.HU/x.oN-7Ffk ? I - e .

z
-

-O )
(V has width N )

forgot last tie



Why is this
a good

definition?

For convenience
,
assume ur =/ .



Do measurement

Mo -- 1075010 ldq.pe , M ,
= 11751/01%2, u,

on

U Ix
,
ON

- n) . Probability of correct outcome fix ) is

( x .com/UtmtmU/x,oN-7
fix) fix)

write

Urho> = find (Sfczlz ) ) t I > ⑦ ( f dzlz>)
where € Icel 't Idzl ' = I . The

-

Mfrx, Ix ,
O) = Iffy> ⑦ [ czlz) , so

Pfoutconefrxs ) others , 2- IV Ix , ON-7%12 ? I - E .



Intuition :

U computes f if for all × ,

✓ Ix
,
ON

-

n ) is
"

close
"

to a

state of the form Ifrx )) ⑧ ljunk) .



Here's another fair definition :

U computes f to precision E if for
any + E {0,13M

¥1
, x.

ON"-hµl× ,
ON -a) E# I - e

Claim : Two definitions are equivalent. (E 's differ , but by

P : For convenience
,
assume in =) .

Controlled amount)

(1) ⇒ (2) : Use uncomputatiion . If U satisfies

N- m
2

⇐ KEN.HU/x.oN-7Bf2 ? I - e .

=D

then build circuit V as follows :



list
v :

'Fist
tinkle
O Og

N - es

( h ) ⇒ ( i ) : Immediate from definitions
. D



What should be the correct definition of what it

means for a quantum computer to compute a decision problem

f :{ 0,13 't→ { 0,13 - { No , Yes} ?
Issue : how input bit string has variable t unbounded length .!

Fix : use a different circuit for every bit string , or

at least every different length n'- lxl .

But careful ! Where should these circuits come from?

A classical polynomial time
algorithm !



Def 'm QPFG, e )]
Fix

a quantum universal gate set G and OLE c 's
.

A decision problem f : { Oil}
't
→ { 0,13 - { No , Yes} is in

BQPFG, s) if there exists a classical
, polynomial time

algorithm that when input Xf{ 011) 't , prints a diagram
of a quantum circuit (w/ gate sets) Ux that

computes ffx) to precision E .



Dependence on G and E ?

Just as for BPP, we have

BQP (G
,
e. ) - BQP (G , Ea )

for all Okc
,
CE
z
-

'

L
.

For G , have to consider convergence properties
of dense subgroups of V12 ) and Uft) .

Problem : need to convert gates in G
,
to

gates in Ga without too much overheard .

Moreover
,
the conversion is only APPROXIMATE

.



In other words
,
if Ge SUK) ,

I can find

0=6,5263 - - - Ge , Gi EG

such that (Assuming G. ad
④ U - 611C E G , both

finite

and inverse
where l -- O ( log

' ( ve ) ) .

closed . )
Take - away : it's easy to find a short product of
elements of G that is E - close to G .µCorollary : BQPCG

, ) -- BQP



Warning : if G is infinite
,
BQP (G)

can include uncoenputable functions
.

Def BQP -

- BQP
,

'
b)

where G is whatever Firle
,
inverse closed

,

quantum universal gate set
you prefer .



Examples of problems in BQP ?

Factoring !

Given an integer n fin binary ) , out put
its prime factorization .

Note : Factoring is Not the same as

T

Is it prime ?
"

[
Already in P

.



It
.
.
QMA and local Hamiltonian problem

Kitaeu's book calls QMA
"

BQNP
.

"

Three way analogy :

P : NP : : Bpp : MA : : BQP : QMA

QMA is very similar to MA , with two additions :

I . Arthur has a quantum computer !

2 . Merlin provides Arthur with a certificate in the
form of a quantum state.

I



Subtlety : it's possible Merlin only ever

needs to use a classical bit string .

It would be better to call QMA
A

QMQA !

The- there is a subset
"

CMQA
"

Unfortunately CMQA is actually called
QCMA .



Is Merlin classical or quantum?



It's not known if

Pf PSPACE ! PSPACE
r*

All of these complexity ¢ AMA
classes are separated by / /
oracles . E.g .

exists a decision

f) ⑦ P MA
problem f such that

I ✓ /
pf # Npf. BPP NP
(There also exists an f I ✓where . P*=NpF

. ) p



IP = PSPACE

but separated by a random oracle !

C CE tf



Why is BQPE PSPACE?

Gist : we can sufficiently approximate

*•zlUlw> for all

z
,
we { 0113N and width N circuit U

.

**zlU/w> =

{ ftp.lxikxi/6alxa7---fxe..tGelxe )
XIIXH - -

- IX
d

U-- 6,6£ - - Ge



Meeting 8.1 Some quantum algorithms

I . Simon 's problem
It

. Reducing factoring to period
-

finding
It . Phase estimation and period - finding



I . Simon 's problem
First

,
recall Deutsch 's problem can be solved in 0h ) on

quantum computer .

Input : a black box function

f : {oily→ { oil}
which is promised to be either :

i ) constant, or

ii) balanced , meaning # f-
' fo) = # f-

'( l !

Problem : Decide whether f is constant or balanced.

Classically , requires 2h
- '

+ I evaluations off.
"

Oracle separation
"

of BQP and P.



Since BPP is
"realistic

"

classical computing , can
we separate BPP and BQP?

Warning : PE BPPEBQPE PSPACE
,
and we don't

know if Pt PSPACE !

Is there an ORACLE separation of Bpp and BQP?



Simon 's problem replace w/ X s.t .

Given black boxyoracle function ¢ IXIEE 2h"

F : { 0,13 " -→ {0,13k
(k ? n- D

which is promised to satisfy

ffx ) -- fry ) if and only if X - y C- { O, s}
for some SE { 0113?

Problem : find s
.

Can 't be solved in BPPF
.

Even a probabilistic
algorithm requires at least 2h12

queries
to oracle

to find xtywiithfrxkf.gg) .



Simon 's algorithm
Suppose have usual

"

quantum oracle
"

for f

Uf :
A ⑦k→ ⑦ k

Ix , y ) ↳ Ix , yotfrx )) .
Use simple circuit

105*-1

no.DuIt x

-

Ifm)



Io )
"
-Dt- shorthand for

107

107 -tf-insist



III.Tati: u. one% innoxious thralling
= FH ④n I d) o Uff ¥4 I x) 10K))
= Her a td {Is § 1×7 I frxD)
' ÷ ⇐ "" '

÷:::?:... .
Hot " f Ix) = Is s r- H "" hi)

X,y



= # ¥
,

fifth> lfrxi

If we measure the y output in computational basis , then
probability of seeing a specific bit string ye { Oil}

"

is

III. Er- n
" ' Hexi > 11h

Now sum of I = Image (f )

III. Ern
" 'Hank It '£¥gf.

''
+ a

"Diz >11h
where f- 'A) = { xz , Xzts}



It 'zi¥g[fy¥''+ a#
¥)

z >1/2=>0 if y =/ mods

T⇒ :

"destruct"

it . on

In if s - On

Get uniform distribution on

"

Constructive interference
"

{o ,s3£= { xe { 0,13 " I x.s - O mod 23
Performing experiment l times, get x

, , Xz ,
- . . , Xe such

that x; s
- O mod 2 for all s . Generate { 01531

with probability ¥ I - Hogsett = I - Intef .



If Xi , . . . , Xe generate , can recover s as

(non - trivial ) solution to

X
,
-5=0 mod 2

X
,
-5=0 mod 2{

xe - s o moda



What the heck just happened ?

Not exactly clear , but it generalizes . . .



Hidden subgroup problem
-

Input : finitely generated group 6 , set X and
black b x function

f : G→ X

that is constant on assets of H EG

(and distinct on distinct assets ).
Problem : find generators of H .



Abelian hidden subgroup problems
well understood

.
( Solvable in BQP ?)

Many important special
cases among them , including

"

- Deutsch 's pride- } contrived- Simon 's problems
- discrete log
* order - finding {Useful !• period - finding



Basic idea : can implement Fourier transforms on

abelian groups on quantum computer

Rather than do this generally ,
let 's cut to the chase :

factoring .



I . Reducing factoring to period finding

Factoring Problem

Given integer N in binary , compute prime factorization
N =p ,

'T'
- - - peke .

reduces to

Factor finding
Given N> I

,
find k k CN that divides N

, or ,
if

not possible ,
return

"
Is Prime

.

"

Note : Miller - Rabin (BPP) or Agrawal - Kayal - Saxena re)

primality test allow us to assume N composite .



Factor - finding for composite integers reduces in BPP

to

Order - finding
Given N and ILXLN with god (xn ) - $

,
find

smallest r > I such that

x' = I mod N.

So
, r is order of x in ⑦ IND )×

.



Factor - finding → Order - finding
Two basic steps

:

I. +2=1 mod N but t # It mod N yields

factor (either gcdrx - I
,
N) or gcdfxtl , N ) )

2 . A randomly chosen y
C-⑦ IND) " has even order r

and
y "tf
It mod N w/ large probability .

If we have such a y , they

godly "- Il , N) will

be a factor
, by step l .



Factor - finding → Order - finding in BPP
Two precise theorems :

I . Suppose N has L bits , is composite, - d x satisfies

Ic x CN

x2= I mod N{×t±lmodN.
Then either gcdfx - kN ) or gcdfx -11N ) is a

nontrivial factor of N .



2 . Suppose N odd , composite, and N - pit" . - peke is

prime
factories. 'm

.
If It x EN- I is a uniformly random

integer w/ gcdfx ,N ) - I and r is order of ×

in INDY , then

p. .b( seven and x'ht - I mod N )Z I - Ye .

If
L .



The reduction .

I . If N even ,
return 2

.

Oh ))

L . If N - ab, all, b ? 2 , return a .
(ON))

3
. Choose random tix LN - t . If gcdfx ,N) > I, fora ))
return god .

4
.
Find r

,
the o-de- of x in ⑦IND) ? fuse quantum

computer)
5- If r odd, pick another X. form )

6 . If r even
,
test if gcdfx 's -11

,
N) or gcdfx 's -1 , N)

is a factor .

If neither is
,
then pick another X .

Shows Factor - finding in f- Bppo
-de - - finding

@R2))



Since FBPPEFBQP, if we can show

Ordering - finding EFBQP,
then factoring EFBQP too

.



III. Phase estimation and order - finding
Phase estimation is a general procedure
for estimating eigenvalues ofa unitary for Hermitian )

operator V when we have controlled - U operator
accessible as oracles for every j .

Unitary U + e.vector Iu) → Future Uke> a- edition,
Controlled -Uri:

C - ut : Ij) In > to Ij) Virtu) .



Quantum phase estimation protocol (sans protocol . .
Input :D Black box for C- UJ

KD eigenvector Iu ) with Ulu> = ed"
" the
fu )

fiii) integer n

so he .g . e
-

-

'
B )

Output : n - bit approximations Fu to Yu

performace-j.ae Dft 2) runtime
,
where t -- est flog (2x te))

- One call to C- Ur E- '- Orn ,
- Succeeds w/ probability at least A - E

.



I wont discuss circuits for phase estimation now
,
but

instead how to reduce order funding to it.

Want to find order of x in ⑧INE) !

Use

U : lyy)l→{ hey mod N) if of yen- I

fly) if Ney E 2h

where L is # bits in description of N.



Eigenvectors of V : (not all of them . . . )

Ius) -- If expf-dt.is#)lxkmodN)

for Oksfr - l . Eigenvalues : ed
"

T
,

Issues : C - V8 ? Modular exponentiation -
- -

i

Ius) ? Prepare #Ellis) = too -
- -ol)

instead
. . .



Sir → r ? Continued fraction trick. -
.



Meeting 8.2 : Quantum error correction

I. Overview

II. Discretization of errors



II. Overview

Should "

fully programmable
"

quantum computers actually be built
,

it is generally expected that BQP will be correct abstraction
n'

of "quantum polynomial time .

But realistically , two practical issues to grapple with when

A

engineering a quantum computer .
H. Storing quantum States in a stable way .

2 . Implementing correct quantum gates .
What's the problem ? NOISE .

I . Quantum States very delicate
.
("Accidentally measuring

"

changes the state.)
2 . Unitary group Ulu ) is not discrete ("Continuous errors" can compound -I



In theory
,
these issues should be solvable

, by two techniques !

I . Quantum error correcting codes

2. fault tolerant quantum computation .

We will focus on the first
,
but let me first address the second

.

Basic idea of fault - tolerance :

in addition to using codes to store States
,
use encoded quantum

gates .

O D O

→ O O O



[concatenating
"

two codes (encoding one code inside

another ) costs polynomial overhead , but can lead to
an

exponential improvement in error rate
. Iterating yields :

P to
- b



Note : fault tolerant classical computing much easier to

achieve . If there's a constant error rate OC Elks
at every step of a classical Boolean circuit

causing independent b. flip errors
,
then

repetition codes
, e.g .

0 to 000 Mamie
in " 'I ' ' 'IE: ?i;

allow us to make

{ 70 as small as we 'd like .

Quantum analog of this co is not very good . . .



What's a quantum code?

An n - qubit quantum error -correcting code of dimension d is

a Hilbert subspace
H E Eh 62×0 . - - ⑦ Q2 = @2)

n 2
"

by
= e

n
"

physical
"

qubits (m called "length" of code)
If d '- 2K

,
then we say

It encodes k logical qubits.
H is sometimes called the code space .

Not all subspaces are same ! How they sit in ) n

wat . tensor decomposition matters
.



Comparer : Inside €4 n

(quantum)
H

,
=

span { 1000
- - - 07

,
1111 . - - 17} ("repetition code

")

Hy -- span { 1000 - - - 07, 1100 - - - 07} (
"

trivial code
")

Both 2 - dimensional
,
so they both encode a single qubit

H
,
E E

'
E Ha

but H , appears
"

spread out
"

more.

How to make precise?



Local bit flip error supported on single qubit
can exchange 100 - - - o) and 110 - -

- o) .

Not true for 100 - - - O) and 111 . . - l) .

More importantly, H
,
is an entire subspace , not just the

two basis States
.

Since quantum computers want to exploit

superposition and entanglement, we wat to detect and

correct errors on arbitrary States in the codespace .2-

The repetition code will be able to detect

up to n- I bit flip errors and correct up
to 2)



Recall

X -- fo, 'o ) z -- fo' ;)

Given lb , b, - - -b.BE ) h

,
define

Xilbibs - - bn) = 1¥, in , X %, n. ;
Habs - --bn)

=/b
,
- bi > ⑦ Xlbi) Ibi. - -- bn )

So Xi is a bit flip error at ith qubit

We define Zi similarly , as a Gelatine) phase flip at

the ith qubit .



E.
g. n'- 5 . It -- span { 1000007, 111111) }
X
, Xy (ft 1000007-1%111111) )

= PEN 10010> t# fo 1101)
"

Majority rule
"

corrects this X. Xy error CORRECTLY .

XzXzX5ffE 1000007+13=111111) )
= M¥ 101101) + As 1100107

We could measure to see that errors occurred
,
but

majority rule will think X. Xy error occurred
,
and

will recover incorrect state
.



l 've been uncarefut How do we see errors occurred

without spoiling the states?

Do measurement w/ operators
Po = 1000007500000/+111111>4111111 (7%767)
P
,
= 11000075100001+1011117501111 ) (biforate, " t)

Pz ? 101000>(010001+1101,17510111) fbif.sn?ooh 2)
c.

bit flips on 1+2
Pk = 1110007511000/-1/001117800111 / ( presumed

)

Phu ! 1101007401001-1/0101175010111 (
bit

tpfie.su?fft3)
:

P = 1000117500011/+111 , oo> (11,001 (
bit flips on 4+5

N presumed
)

TI - P , - Pr . . . - PN



So repetition code good at detecting bit flip errors
.

However , H ,
is still a bad QUANTUM code

.

A single local Z error on H
, can swap

orthogonal states :

Z
, (100 - - ' + Ill - - - D) = too . - - o) - hi . - - D

vs

H
,
can not detect

any Z errors .



So we're left high and dry for now
.

Two key issues :

I . Do good quantum error correcting codes
exist ?

2. What about errors that aren't

X or Z?



II. Discretization of errors

Fortunately , if two errors are correctable
,
so is

any

linear combination of them
.

Need to make some things precise first :

I . Error and noise.

2- Detectable error and code distance

3. Correctable error



If H Ek#)
"

, a noise for error) space is
any

subspace E E B fro) ' ) Tall liner transformations
f-Mat Rn))

An error is my
F- E E .

We
say It detects E if exists ¥6 such that

HIEN> = ¥9147
For all 147,147 EH .

IF P is orthogonal projection onto H
, equivalent to

Intuition:

when we

saying #s¥I-PPE 14) = he ft) operators to decide whether
It) is still

a
codeword

for all 14 ) EH . after E acts
,
if answer is

"

Yes
" (happens

w/ prob. HEH) , we still have 147.



The distance of It is smallest DEIN such that

there exists an error supported on d qubits that
It can not detect .

( Trivial and repetition codes both have distance 1 . )
H corrects errors from E if for all X, YEE
It detects Xty .

theorem This is correct definition of
"

correcting errors

from E .

"

1. e., it's equivalent to requiring there

exist a
"

error correcting procedure .
"



Equivalently :



Take - aways
I. If He corrects (detects X and Y

,
then it

corrects /detects a Xtby .

2 . dist H > 2K if and only if It corrects all

errors on k qubits .
3 . Because products of X 's and Z 's and I 's

generate B 4 k )
,
suffices to correct

them on all k -qubit subsets in order

to correct ALL k - qubit errors.

theorem H corrects all errors on k qubits if
and only if it detects all errors that are products
of at most 2K Xi's and Zz's .



Meeting 9.1 : Toric code

I . Kitaev 's toric code



Historical note :
Tonic code was introduced by kitaev AFTER

the stabiliser formalism was developed , by Calder bask
,

.ottoman
,
Knill

,
Raus

,

Shor
, Sterne , et al . . .

Toric code is nice b/c it gene -slices in different

ways

i ) Stabiliser codes
,
DIL chain complexes , systolic geometry, . . .

ii ) other
"

anyone models
"

fine . topological quantum field

theory ) and topological quantum computation
(hardware - based approach to fault tolerance

,
not

just error correction)



In a nutshell : stabilizer formalism is a way to convert
-nun

classical linear codes over {Oil}
"
= Ff for other finite fields)

into quantum codes
..

Code
space

is a common age- space

of
"

stabilizers
"

,
which are tensor products of X 's or Z 's

.

More precisely : isotropic subspaces of tf" w/

symplectic form correspond to stabilizer codes
,



I . Toric Code

type : nxn grid on a torus
. 7

A
od n

i
.

7

quantumOutput: A code H with

-

length 2nd - distance n

* dimension 4 (two logical qubits)



Construction
mm

-

I
. Put

a qubit Eh • • • •
a.
•

• So Be 00 DO

on each edge (2nd) •

•

•

•

• In- ⑧ • Pesos
• Ps2 . For each vertex V, define . •

vow
•"

£.
-

•

•

•

*

•✓

yXu -- Xun Xu
, Xue Xvw (ordered:#If •

•

•"

•
?
•

•

•

•

•

For each 2- cell P ("plaquetfe
'

) :
•

•

•

•

•

•

•

•

•

•

Zp - 2-pntpstpetpwfordme.at! 't

3. Codes space is

2ns
H -

- { 14) e I Kult) - 2- pH) -- IH) ftp.v }
So
,
H is common + I eigensp.ee of

all vertex and plague the operators



• VN Xvlbnbsbebw)
•

I
"

.
-

- IBD) Albs)) ABED
Vw

• ↳
VE

⑦ (Xlbw))
=lFEsEekE)

x=f9 'd
2- (

'

o
:)



Claim : dim H -

- Y
.

Proof : Note all operators commute :

( j . stifled on
[Xy , Xy ) - ftp. , -2ps ) - [Xu , Zp) = O

.

next page)
So they can be simultaneously diagonalized . Note eigenvalues

of Xv and Zp are Il . Thus dim H *O.

Also note two relations

÷÷t÷÷÷÷÷÷÷÷÷÷÷.":*.ir.)



Why is [Xu
, Zp) - O ?

If Xv and Zp have .

• BO BO Bo
pw
•

disjoint supports , obviously • • • • •

they commute
•

•

•

•

• In- goose
.

•

vow
*"

£.
-

•

• ! -
•

(e.g .
"

✓
us

(X 1) ( I 2) lab>
•

•

•

• F.
•

•

•

•

=fX E) lab)
•

•

•

•

•

•

•

•

•

•

- fi E) ( X 1) lab) )



Suppose V and P overlap X✓Zp
•
Fb

= X
, XzXzXyZ3ZT¥¥

9306 P • 9-5 =ZsZgXzXyZzZyK%

t.jp..im/::::::.:.:::::::*Xv=X,xyxzx,

" tph .

2-E 2-374752-6 XZ
* less , E- 199 )



know It is some Hilbert space , and

dim,cH= k if and only if dim,cBfH ) Ek
2

So let's compute BIH) . General non
-

sense :

BIH ) I GDI

where for all u, P

D= { A- c- B
m) / CA

,
Xu) -- O -- CA, Zp)}

I = ideal generated by Xu - I and Zp - l
.

It

Keyport : Xu - Idf ⑦and

G has topologically meaningful generators !!



If c is a loop in 1- skeleton
,

-
÷.

C

define • • • • •f
• So Be 00 DO

2-
c
-

- IT Ze •

•

•

•

•

•

•

•

•

.

CEC

+ •

•

•

•

•

•

•

•

•

If d
a loop in dual l - skeleton, •

•

•

•
?
•

•

•

•

•define

Xd -

- IT Xe
•

•

•

•

•

•

•

•
¥?÷
.

e. Ed

Note 2-
c ,
Xd E G for all aid . (why?)

Even better :

G is generated by Zc and XD .



Note
,
if c bounds disk D (more

• -• • joy •[cgenerally , isllhihomobgically trivial) the
-

2-c'- TT Zp .

••.• . . .PED Ig •

•

•

*

•

If d bounds disk D ther d •

•

•

•
?
•
•¥•

.

X
,
= IT Xu .

•

•

•

•

•

•
•£&??
.

VED

In particular , if c and d bound
,
then

Zc and Xd act by identity on H
,
i.e.

to =/ mood In and Xd = I mod I .

I





Corollary If c
-

- c
' in H

, (5×5,271227) , then

2- chg = Zar IH . (Upper bands
A d-- d

'
in Hirsixsr , 271227 ) , then dim BTH) Elf)
Xd IH '

- Xd - IH .

Converse also true . To prove this
, suffices to

CN di .

check that
i Conclusion
i
-

:

Ci , discards I dim Bht ) =D

yield 16 linearly I

, fly
independent operators

'

I dim 14=4
/ :

.

on H .

-
1-
- - - - - - . . -- - - - -- da

i
Cy



What do code vectors
"really

"

look like? ¢2=sp- { 107117)

Suppose 147 EH . Then Zpht> = 147
. . .

2- '- fo ?.)

?•h Z-plbnbsba.tw?=ZwZsZE2-wlbnbsbEbw)
GL . p • Et btbtbxb

•

E f- 1)
N s F- wlbnbs below)

€2

So
, Zp 147=14) for all p mens 847 must be in

span of basis States where sum of bets around each P is even .



-
- -

-
• Xvlbnbsbeebyw) -- Ibnbsbebw )Bo B-

•

Suppose 147 has some nonzero amplitude along lb.ba . - - ban)
future bn + brsxbetbw -_ O mod for each plgquette P)2

Since Ault> = 147
,
then IT) must have same

amplitude along Av lb , by - ' ' bans).



Note : Au preserves
cod

.

'

.

÷
. .se

mod 2 and} !: Yay !
£.be mod d- of y

H
, (5×4%51 :

.

Can check : if i

£
,

be
"
= ¥

.

be mod L and

-

i
- - - - - - - - -- - - - - is

¥gbj= S be mad 2
,
then Julius

,
. .

.

, Ve such that

Av
. Ay

- - - Ave lb ,
- -

- bar) =/ bi - - - bad
.
. ) .

Note: need plaguethe condition to prove
it!'



Conclusion : there's a basis of code vectors in bijection
with elements of H

, (5
" XS

"

, 27/227 ) More precisely,
there is basis where each element is an equal
superposition of ally cellular representatives of given class in

27/2 homology E.g . (ooo - - - o) is NOT in A-

c. i . .

But it reprises 927/2 Cellular
° i

r cycle fnanely the O cycle).0 I

° ! Can build a code vector by Sunny
O

'

r :
. over cellular rep 's in sane homologyo -

t
- - - - - - - n -- - - - -- da

'

o o o o o

'
t class

,

100 -
- -o> t - - -



Cpd, Cpd ,
L

-

L
-

p
I

| I

/
I

( l

l
l

p I

|
I

| I

- i :
/ i

.

.

-
'
-
- - - - - - n . -- - - - - da - f - - - - - - n . -- - - - - da

'
Cy Cy

Cpd, Cpd ,
L

- L
-

l l

l l

l l

l l

l l

l l

l l

l l

l
- l :
"

e
e

-
1-
- - - - - - n . -- - - - - da -

L
- - - - - - - n -- - - - -- da

i
Cz

'
Cy



Distance? Suppose



Meeting 9-2 : Toric code It
,

and stabilizer formalism

I. Toric code code vectors and distance

II. Stabilizer formalism



Construction REMINDER
mm

. $
I
. Put

a qubit Eh • • • •
a.
•

• So Be 00 DO

on each edge (2nd) •

•

•

•

• •Pw•P••Pe•
. N p,

I
2 . For each vertex V, define . avow

•"

£.
-

•

•

•

*

•

A

VyXu -- Xun Xu
, Xue Xvw (ordered:#If •

•

•"

•
?
•

•

•

•

•

F- - each 2- cell P ("plaquetfe
'

) :
•

•

•

• 9
•

•

•

•

2-
p
- 2-pntpstpetpw forget

't

3. Codes space is

2ns
H -

- { 14) e I Kult) - 2- pH) -- IH) ftp.v }
So
,
H is common + I eigensp.ee of

all vertex and plague the operators



(

I. Toric Code Codevectors and distance

Finish claim from last time :
r

e.

There's a
basis of H in natural bijection with

Hp (six S
'

; 27/2) . The basis elements are equal
superpositions of all cellular coracle representatives
in given homology class

.

Prot : Identify computational basis vector

lbibz-i-ba.DE €2) 2nd

with a 27/2 cellular l - chain . That is
, lb.ba . - - band

encodes a formal 27/2 linear combination of edges

in cell elation of 8×5 .



Thus
,
could say !!

dm -
= Span ,c( Cjirsxsii 271227 ) ) .

Note lb.by - -
- bait represents a cycle iff

lbpntbpstbpftbpw = O mod L iff

2-plb.bz - - -bait -_ lb.bz . - - baht

for a
'll plaquettes/2 - cells P

.
So if It> EH

,
we

see IT) is a superposition of cellular l-cycles .



From last time
, given IT> EH with Idb.bz . --smelt> =c ,

the condition XUIY)= 147 forces

kb.bz - -
-bz.sn/K.Xq---XreM=c .

Moreover cycles Ibis's - -
- bin) and Ib , by -

-
- bark satisfy

Xu
, Xvi - - Xvekb.bz -

-
- bark - Abib's " - bins>

For some X 's if and only if
CN di .

&
,

bed = ¥
,

be mod L and • i
•
,

.ec?dgbe' = S be mad 2
. !
•
l

l :
.

CL as in here
I ← '

-
- - - - - - - - -- - - - - da

where C ,
and Bu • • • • Cz

IT



Distance ?

Recall , a code can detect all k -qubit errors

if and only if it can detect all products
of Xi and 2-

j supported on at most k qubits .

Suppose
F- ⇐ Xiii. . - xiiiziizii . - - ¥" ki , Bj - oil)

is such an error.

If E is a product of Xu 's and Zp's ,
the E

acts trivially on H
,

hence is not as error.! If E

takes It outside itself
,
then we can detect that

because one of the Xu's or Zp 's will be violated.



Main issue : if E preserves H setwise but not

pointwise. Tl t is
,
if E) It is nontrivial . In this

case , we know from last time that Elk must

be a product of loop or dual loop operators
.

.

If c is a loop in 1- skeleton
,

-
'

C

define • • • • •f
• So Be 00 D8

2-c-- IT Ze •

•

•

•

•

•

•

•

•

.

CEC

* •
•

•

•

•

•

•

•

•

If d
a loop in dual l - skeleton, •

•

•

•
?
•

•

•

•

•define !
Xd -

- IT X

•

•

•

•

•

•

•

• ??÷•
e

e. Ed



Such a product can act nontrivially if and only if

its support contains a cycle that is nontrivial in

H
,
( sixties ) .

So
,

distance RH )=min{ # Supp IN CE
"

(5×51-27/2) , FOEH
,}

=
n .



Toric code can be generalized to:
- htt homology of any cell complex
-

ay 271L chain complex.



It . Stabilizer formalism (after Calderbank - R s
- Shor - Sloane)

Toric code is an example of a stabiliser code
.

Mr

Givin n qubits, define error ' roup

F- '- Ent V ( 2h ) -- U 2)
n )

to consist of a tensor products of form

I w
, ④Wz '

- - ⑦ Wu or
II w, WL - -

- ⑦ Wn

where w;
¥ Id

,
X

, Y ,
or t

Recall
ya f?

-

io ) -- ite
F- is a finite 2- group . 2^+2



Know if we can detect all errors from E supported
ion k qubits , then we can detect all errors from

✓ (2h ) supported on at most k qubits .

(More precisely , the stabilizer formalism presumes X. Yet

each occur with same probability .
However

,
without too

much overhead
, implies ability to correct errors in

other models
. . . )



Classical warm - up

Classical 27/2 linear code is subspace
C '

- (27/2) ?
⑦12) " is of course space of all possible states

,

but it is also space of all possible errors.

Error EEC iff e is undetectable (Cis - subspzace )
( corrects set of errors S iff for all

sites
,
either set -- O [

disjoint from S
.or set Etc

.



In quantum setting , a nontrivial operator may
have trivial effect

on code space (e-g. ✗v in for :c code) .

So
,
we look for two subgroups of F-

→

Sss .

T T
Analog of Analog of C ,
{0}

,
the the undetectable

"

trivial errors
" errors

For this to work
,
need S

'
to be centralize FS .

In particular,
want S abelian

.

How can we construct ?

Compare toric code !)



Order (E) = 22-+2

Center )=CfE)={ II , III }

E := EICIE ) = (27/2)"

If
e- c- E , can uniquely write

e= it ✗ (a) 2- (b)

where he 27/4 and

✗ (a) fpc) = ya ,

it"se addition

(bit flip errors where

9J -1-0 )

2- (b) / c) = f- 11b£ 159 ( phase errors where
a ,bi_ (27/2) " ⑤of product mod 2



If e
-

- it Xfa) 7lb)
,
e' = it

'

Xrar) Zhi)
,
then

ee
'
-
- i "" Ha ) Zfs) Na ' )ZIb' )
= it -it

'

hi
"

bxf.jxra.tt/b)Zfb7--;ttXf-HiibXfar)Xk)Zfsr)Zfb7--itttf-yi-bfy9'*
XN) 2- (b) Xk) 2- (b)

= f- 1)
a. b't - "beer

.

So e and e
' commute if and only if

a. b' tear .b =D .
fin 27/2 ) (H)

Write e- = fadb) , E- (a' Ib ' ) for images in EF .

e and e
' commute iff E and E. orthogonal in E wrf th)



S E E will be abelian if and only if

e- 1Er orthogonal for all e-ie
' EE EE .

In other words
,
S abelian if and only if 5- is

totally isotropic . Lagrangian
er is

E.
g. { Ha ) Is c- 27/2) or { Zfs) I be 2712} .

Beware 'll ft) is a symplectic inner product on Hm

IF falls) . ( a'Ibd) = a.b' ta ' -b , then

(a) b) • (a) b) = 29.5=0 .



Centralizer of S is exactly the
pre image

of

5th (Note: F E -5$ if 5
is isotropic !)

Let codespace be

H '
- { 147 / elm> = It> for all ee S }

.

Define the symplectic weight of falls)E 2)
2h

is # of nonzero pairs (ai ,b; )
when we write

(alb) = far
,
. . .

,
an Ibc

,
- - - ibn )



theorem If dingy 5 =n - k is isotropic art symplectic
form

,
then It is a 2K dimensional code with

distance
D= min wtsym (V ) -

✓ C- 5h - 5



Meeting 10.1 : From TQFT to TQC
, a brief history

I
. Atiyah + Witten

II. . Reshetikhin - Turner t Tu aev

TIE
.

Turner - Virat Barrett -Westbury
II . Kitaevt Freedman

I . Freedman - Kitaev - Larsen - Wang

FI
.

Levin - Wen



Kita . v 's motivation for introducing toric code

(and generalizations to other finite groups
I will

mention later ) was to address fault tolerance

problem USING HARDWARE .

He doesn't use language of TQFT directly , but

was clearly inspired by it, since any ons were

understood to be th. "

particles
"

that can arise

in certain exotic (topological ) QFTS .



I. Atiyah -1 Witten

1988 - Atiyah defines

topological quantum field

theory .
Mathematically rigorous !
Uses language of
cobordism , and functors

'

pub . IHES (1980 )Inspired by work (esp.
of Witten ) on (general,
not -entirely - rigorous) supersymmetric quantum
field theory , and Segal 's axioms for conformal field theory . . .



TQFT in a nutshell

IK :
a field for other unital commutative ring . . . )

( obfd ) : d - dimensional oriented cobordism category

Objects (cob Id) ) : oriented , smooth , closed d-manifolds
Mor (cob (d ) ) : oriented

,
smooth fdtl) -manifolds M ,

w/ 2M -

- Colt [
,
.

M is a morphisms

M : So
.

→ El
⑧ : disjoint union

A fddtl) - dimensional TQFT is a

"

④ -

respecting linearization

of Cobh)
,

"

i. e. a
- functor Z : Cob was Vecht)

x
might as well assume finite dim .



Schematic d-
- 2 , Ik = Q

uE t 2- (E) ← f. do etf space

-

⑦ t ZIE
,
UE
. ) * zreilaz

E
.

En

mini "m÷÷
.

⑦ ⑤



Hermitian and unitary TQFT
If IK -- Q

, we can ask

my ,
#
adjoint.

2- f-m ) = z
T
M w/ reversed orientation and swapped

boundary pieces
for all M .

If this holds
,
call the TQFT hermit.

It is unity if moreover
,
the pairing

lots



[¥¥①D$
2- (Ext) : 2- (E) ⑦ Zf,

-E)→ 2- road

2- (E) Fda , vector space
If this

pairing is positive definite and Z is Hermitian
,

then we say Z is unitary .
If Z is unitary , the ZK) is a Hilbert.*



(Tor :c Code)F
2- ( E ) : = Spang Hp (Si 27/2 ) if I connected

2- (C. us , 2- Is
,
) 2- ka )

IF dm = Cow I , ,
then

2- rn ) : 2- (E.) → -2K . )
linear ites the correspondence

M
# EH

,
(Coiner)xH , Kii 2712$

M*={ Kip ) $ ④ '

- Ep) in Hilmi 212 ) }



Also in 1988
, Atiyah asked

Is there an intrinsically 3 - dimensional explanation
for why Jones polynomial is an invariant of

knots?

Jones had discovered it in 1984 .

Understood only

diagrammatically at that time
, e.g . as a normalization at

Kauffman bracket.it

(O ) = -

q
's
-

q
's

EX > = - que ) ( ) - q'
'

Mfk )



19 ' 9 - Witten argues (not 100% rigorously) that
for of a root of unity , the Kauffman bracket

can be used to build

a (2-11) - dim TQFT
.

Based on quahtiz.mg
Chern - Simons theory w/ -

gauge group 6=542) .

Different roots of unity

yield different TQFTS
.



It . Reshetikhin - Turner t Tu #nev

Witten's construction net rigorous. Eventually made

rigorous , but in the meantime Reshetikh.in and Turan

did give a mathematically rigorous construction

using quasi - triangular Hopf algebras and

diagrammatic for skein ) co-structures of TQFTS
.

The Witten - Reshetikhin - Turner uses the category
of finite dimensional representations of a quasi - triangular
Hopf algebra .

When one uses Uofslz , one recovers

the Josey - Kauffman TQFT for that specific of .



Turner generalized further to arbitrary

Modular Tensor Categories .

(If His g. tri . Hopf algebra, then Rep FH) is
a modular tensor category . )
It turns out

, once
- extended (2+1) - dimensional TQ FTS

are entirely determined by a modular tensor

category (w/ one additional small choice)

Recent ish theorem of Douglas , Schoene- - Priess
,

Vicary , et al . . .



A once
- extend TQFT is a

"
usual

'

Otb - dives: oral

TQFT that also associate, data to every X-D -Maiko

in functor.at way . .
.

Making this precise involves
"

higher tensor categories.
"

Era

µ3 to 2- rn) : 2- ( zero ) → 2- fam
, )

←
linear

wrap

Its vector space Z

S
'

↳ category 2- By
it is a modular tensor category . - -



One can study even further extended TQFTS . - .

e-g . fully - extended TQFT

dtl manifold - linear mop

d manifold M vector space

d- I manifold → category
d-2 manifold → 2 - category

C

:

port → d - category
" '

Baez - Dolan cobordism hypothesis proved by Lurie .



TIE
.

Turner - Vico + Barrett -Westbury

Turner - Vira showed ( 1993 ?) how to Construct

a fully extended 3 - d TQFT from a

modular tensor category .

Don 't get anything that Restetikhin - Turner construct.es

doesn't already provide .

Barrett - Westbury defined spHso-
categories , and showed Turner - Vi-o "

works ' '

For
any spherical terser category



Turner - Vi- o t Barret-Westbury :

• Is spherical
t-

Eategory C

S
'

t bridal 'd center Zfc )
(always a modular tensor category)

I ↳ Vector space 2- (E)
(agrees R - T castration for

Zrcgg



Eg
C - G - Vec

the category of G -graded finite dins...) vector spaces

Over Cl .

Object in C looks like

✓ = Vg
geo

where Vg is a
Fd

. Vet . space .



Morphism

F. V=¥Vg. → W - town
MEG

is a sum of lunar
maps

Fg : Vg → Wg ,

i - e . f= to fog
GEG .



Vox W -

- Vg) ox (ft Wn )
= (Vox W)

×

④ Ox W)
×

= to Vg ⑦ Wh
g ,
h

g
h = x

= got Vg ⑦ Wg- ' x



Kitaev 's
paper , esp .

2nd half
,
is essentially

building the Turner - Viru Barrett- Westbury
TQFT associated to G - Vec.

Toric code is special case 6=27/2
.



Meeting 10.2 : Topological quantum computing , I
I . Anyone from elementary excitations in tonic code

III. TQC and TQFT
go

hard in hand .



I . Anyone from elementary exudates in tonic code

Given a cello lotion w/ N edges of a genus g sofa Sg,
toric Code yields a 49 - dimensional code

space

HE fly
N

H -

- { ht) I 414) -- 147=2-+177 Huertas v, plague# P}
We can *e package H as the ground state space

" of

H -- GII - Xu ) + PERI - Zp )
X H is a nonnegative

i - e . He = Ker Htt
. Hermitian operator



x -

-

fo. :) 2- -- fo' : )
spec X -

- E - I , I} spec -2=4-1 , I}

I - x -- f ! , I ) - z

sis:c.
" can %

,

spec I - Xu
-

- { 0,23 ) spec I - 2- p
-
- { 0,2}

Xp 's and Zp's commute
,
hence so do

I - Xu's and I - Zp 's



Physics intuition : H consists of
"

vacuum
"

or
"

Zero -energy
"

States wit . Hamiltonian H .

Eigenvectors of H corresponding to NON - zero eigenvalues?

spec
H : OC * , CHL - - - c th

T
The eye- space is the state

space for (pairs of)
"

elementary particles
"

of this system . - -

In fact, spec H
: OL 428C - - .

What is Ey
,
,
the eiye- space corresponding to H?



More intuition :

suppose Xu 147=1147 .

We might say that 177 has a
✓

"

charge
"

or

"

particle
"

at vertex v
.

tho- zero)

Similarly , if 2-
p
1474147

, might say It> has

a (nonzero) flux through P
,
or 14) has a

"vortex"

an plaguette P
.

A lowest ene y state ,
i - e . It> C- Er

,
must violate

as few of the constraints Xv, 143=147 , Zp 177=177
as possible .

B/c IT X# = Id - PIT Zp , 147 eiler violates exactly
two Xu's or two Zp 's .



Recall :
If c is a loop in 1- skeleton

,
-

÷.
C

define • • • • •[
• So Be 00 DO

2-c-- IT Ze •

•

•

•

•

•

•

•

•

.

CEC

+ •

•

•

•

•

•

•

•

•

If d
a loop in dual l - skeleton, •

•

•

•
?
•

•

•

•

•define !
Xd -

- IT X

•

•

•

•

•

•

•

• ??÷•
e

e. Ed

The loop operators generate possible errors of the code
.

A loop operator implements an undetectable and natural error
if and only if the loop is nontrivial in

Hirsi xsii 27/2)



String operators :
If c is a path in 1- skeleton

,
-

c

define • • • • •[
• • • • •

ray2-
c
-

- IT Ze •

•

•

•

•

•

•

•

•

•

4

EEC

IF d
a path in dual 1-skeleton,

II.
•

•

•

•

•

•

*

•

et're

•

•

•

• i•q•
-

•

•

•

Xd -

- IT X

•

•

•

•

•

•

•

• ??÷•
e o VO

eet Xu.to/Y7---ZclH
If 14> EH, then 2-ally and Xd 147 are in

Ey
,
.

For instance
,
talk? - ill violate the two Xu 's

at ends of c .



-

c
• • 00 • •f
• • • •

•r•\
•

•

•

•

•

•

•

•

•

•

Y

+ •

•

•

•

•

•

•

•

•

•

•

•

• ig.
-

•

•

•

•

•

•

•

•

•

•

•
i.
•

On the other had

"

X✓Zc14) - 2-alt)
Xu.EC/Y7---ZclY) for

ayy Vt Voc 4

Xv,Zcl4> =
- 2- alt) and

Zpzc 147=7147
For all P

.



Note : If he> EH.

2-
a
177 = 2-

or 147 if and only if

Ctc
'
-

- O in H
, (5×5420/2)

Similarly for Xo 's . T
-

• • • • • I -- e gene - ally
,• • • • • We

need
•

•

•

•

•

•

•

•

•

• C - or

H: !:&:
.

.

.

. (air . e'

•

•
•n• ?

•

•

•

*

•

•

•

•f. • • • • ??÷
.

9 tooth
.

Surface
codes "d

'



Kitaev 's ($100,000,000 ?) idea :

introduce a small number of particles onto

the surface , and move them around in

controlled ways in order to intentionally manipulate
a code state of the for:c code

.
Because nontrivial

operations occur only after doing something "topologically
nontrivial

,

'

the probability of implementing the

wrong operation can be made small without much

Overhead .

In other words : " fault tolerance from hardware
"

if you can impfmet the toric code Hamiltonian in a
lab.



Two related ideas for how to process

information topologically using tonic code :

I
. braiding

2 .

"

Dehn twisting
"



Braiding in Kitaev 's mode ) I EH

start w/ state :

Xd tch?
BO

g
n, ←f#g¥2 •

a-
•

73 At'
•
As

F-
*
a

BA a petFi
• BOB •

Xe -

- Xqgxaj - - Xq , ↳€e •

H

g.
q,

%

Applying Xl d
to Xotclx)
is like moving flux in Po ground
one of the charges at the end of the C Stig



Xefxdtch's) = fl ) Xd Ze 147

Note : this is true only because

of the charge at the end of

the string C
.

Weird ! Moving flux along a

loop around a change implements
or nontrivial charge to the state .



The elementary violations of

the stabilizer ( i.e . the

particles) have Thon trivial
"

braiding statistics .

Such particles are called

any ons
→

.



Stat n) ht> EH .

"

Create particle
-

by

2-
c. tej

- Zcsl x

:÷÷÷÷:÷÷÷÷÷÷:*
Loop operators yield a representation
of 10 strand b -aid group !



he t F-
Is

✓= Loops. 147
E Ey,

Unitary
Representation

Blows UN) .



"

Dehn twisting
" 1007 t 2-

co
1007 ↳ 2-

c. Zeo 100)

start with oink -- 4
X

(x>
EH

No> Alo>

÷::÷÷. :*
.

in H by Recall :
creating pair TGgICo .

• -

Of myong, Loop Oporto,

move one around act on H like

to- us , then annihilate the Pauli X 's
and Z's



If I ①
2 Eh =$pas{ 10031017,1in,

loop operators got on H by
"" 3

X Id
,
Z Id

Id ⑦ X
, or

Id Z

So
,
can process quantum info in H

by applying loop operators .



Problem with toric code ?

With toric code
,
we can only

implement X's and Z 's

o- codespace Using loop

operators . So
"

Dehn trust
' '

idea is insufficient to generate
quantum universal op's on It



Similar issues for braiding



Are there other
,
similar setups ,

but where the topologically protected
operations are powerful enough to

implement a quantum universal

gate set?



Yes !!
This is what Freedman - Larsen - Wong

prove .



III. TQC and TQFT
go

hard in hand .

Once - extended (2+1) - dimensional
TQFTS provide a language to
abstract away the combinatorial

aspects of Kitaeu 's proposal ,
and focus on the topology
of

any ons and their interactions



Meeting 11.1 : Topological quantum computing , II
I. Quantum circuits inside extended TQETs

II. Which TQFTS are BQP - universal ?



I . Quantum circuits inside extended TQETS

Last time : string and loop operators in tonic code are

insufficient to build a Universal quantum computer.
However

,
the idea is useful because string and loop

operators are

"

topologically protected
"

operations .
Are there variations of toric code construction

whose topologically protected operations are

powerful enough to approximate arbitrary quantum
circuits?



Freedman , Larsen , Wang (200 ÷. ) showed answer is

YES .

Specifically , they use the
"

Jones TQFT city of
-

-
ed""?

This TQFT has other names
:

•. SUCH Chern - Simons at level 3

• Witten - Reshetikhi . - Turner theory for Uggla , of
-

- e'""5

•

expected ayon
statistics for fractional quantum Hall

effect at certain filling fraction . . .



We're going to work through the freedom- - Loser - Way
construction this week .

First
, we need to understand formal properties of unitary

once extended (2-11) - dimensional TQFTS This will

allow us to formulate general conditions that allow a

TQFT to be used to simulate quantum circuits .

Then
,
we will need to check the Jones TQFT satisfies

these conditions .

(b) l 'll say some things later about these restrictions .
For now

,
TQFTS are all unitary .



RECALL : a (non - extended Atiyah style )

Unity (2+1) - dimensional TQFT is a ⑦ - functor

from Cob (Lti ) to Hills ← DX - category of finite

dimensional Hilbert spaces

⇐ surfaces ↳ Zfs)←
Hilbert space

yeahMMtszrmsizrsosozrs, )→zrs,

so s
,



Reasons to like Atiyah style Gtl) -dimTQFTs :
• Good source of G - valued invariants of closed 3- manifolds

unarms :

x→zr¥
ZIM ) is a liner

map
① → 4

If M } is closed
,

hence the ) E Q .

then 2M - 0 if Zhi) # 2- (Ns)
,
then

Ms # N 's
.



Reasons to like Atiyah style Gtl) -dimTQFTs :

• TQFT axioms allow us to compute these invariants via

"

cut and paste
"

, e.g .

from a Heegaad splitting .

If M = How H
,

where Ho and H
,
are two

dHo=dH
,

genus g
had ledbodies

,
we can

"

divide and conquer
?

$
Z '

- HH , )oZfHo)

µ
-

-VEg

EEE
$



Get representations of mapping class groups
of closed

surfaces from a (2+1) - TQFT.
Called quantum

representations of mapping class
groups.

If S is an oriented surface
,

MCG ( s ) :* Homey (5)(isotopy
Intuition : MCG ( S ) is "orientation - preserving homeomorphism,
modulo isotopy .

"

MCG Is) I Homo + (s) / homotopy
= Diff

.o+
Ks) f isotopy

¥ Honor, (5) ( Normal subgroup of homeomorphisms
isotopic to identify



f. g : S →S are isotopic if the
- e exists

H : sarcoid → S

such that :

⑦ Hfx , o) = ffx ) texts

His H1n1 ) -
grx , tres

Kii) Hfxit ) is a homeomorphism S →S for each

fted t .

fin) H is continuous .



Building quantum reps from TQFT ?

Givin Z
,
surface S

,
and homeomorphism

f : S → S
,

can build tf ) : 2- B) → Zfs)

by taking the
mapping cylinder of f :

Us
ZA) : - 2- (Mt )

'

i'iisii¥g÷÷i÷÷:*.Un Q b 7ft)=Zrm⇒=ZMg)=Z



Mapping cylinder of f : x → Y

Mf :-. Xx (OLD W Y /f×
,
l)
-

fix )

e.g . X= S
'

,
Yi Ept} , f constant map :

-

-XO i:D:c
-

103 Ii }



Gian TQFT 2-
'

- Cob (2+1) → Vec
,

for each surface S
,
we set 9 representation

z : Meers >→ GL ( 2- (s ) ) .

←
Called a quantum representation .

Warning : w/ more careful axioms, might
only get a projective representation ...



If TQFT is unitary , then the quantum representations are

unitary . ( La er , they may only be projective unitary , but that

will suffice .)

Z : Moses) → puffs) )



Can calculate 3 - manifold invariants using the quantum representations

Suppose M is a 3 - fold formed by
"

twisting
"

the standard Heeg and splitting of S3 by a

genus g surface

blue H
,

twist these
curves using

fencers) .

→④¥¥¥Q
.

Lemma : if a ,
.
. . ,cg are a complete disk system ,

Iff) EMCGfs ) is represented by fi the-

system ,

independent of
fro

. ) , . . . ,fkg ) forms another complete disk representative f.



Then (up to
a sign error in exponent)

2- (m > = 2- ( H , )o ZHI
's 2- THO) .

This expresses
ZM) in terms of the

quantum representation .





Rough pass at TQC :

find a unitary TQFT whose quantum representation

for some surface S is dense inside

poetess )
.

Interpretation : • Hilbert space Zfs) is quantum
-

memory

• Action of a mapping class FEMCGFS ) yields

q

"

quantum circuit
"

2- As : 2- b) → Zfs)
.

← to mate precise requires
choosing generates of MCGFS) ,



theorem (Lickerish -Wallace) MC@(s) is

generated by Dehn twists along a specific

set of finitely many simple closed curves :

gig-24g '- 3g - 2 total generators



Dehntuist

r

u

Ty : cut NIH
,
and glue back in with

a
twist



Suppose 2- : Mc Grs ) → pvfzrs ) ) is

dense
,
and let f- = IT

,
Tq. . Applying 2- to

F

Yields , y ,
2- (f) = thrift halo - oZ¥

II lil

left 'Effyqy
" Taitz . Ts

,

AWFUL PICTURE



Using quantum representation of MCGRSI
,
we

could try to simulate circuits
.

However , can 't be made correct yet
,
b/c need

to decompose 2- B ) into tensor products

of subspaces in order to
"

localize
"

qub:b

into different regions of surface .

Need extended TQET !



Meeting 11.2 : Topological quantum computing , EITI
I. Quantum circuits inside extended TQETS

,
continued

II. Which TQFTS are BQP - universal ?



Laettner : can try to use quantum representation
of mapping class group of fcbsed) surface determined by a

unitary TQ FT to process quantum information
.

Probert : don't have
any clear way

to decompose Hilbert space

2- ( S ) into tensor product of subspaces .
So

, unclear how to encode quantum circuits . . -

One (unhelpful ) idea : use disconnected surfaces?

Quantum representation won 't generate entanglement . . . .

2- I z)oxz)

Solution : use extended tQFT !



EXTENDED TUFTS have even nicer cut and paste

properties
In addition to computing 2- (M ' ) by cutting M 's

slung
a surface

,µ
we can cut surfaces along curves to compute

their state paces .

* e
will assume

To make precise , extended TQFTS come equipped with

a finite set of
"

colors
"

C ⇒ { 42 , - "

* r} .
We then define the C - colored

, once
extended (2+1) - dimensional

cobordism category C - Cobbett )
.

Contains Cob ( Lti) as a subcategory .

Note : what follows is imprecise and incorrect , probably . Why? Don 't want

to define extended TQFT or modular tensor category in full detail . . .



C - Cob (Lti) includes new objects :mmmm

surfaces with ( oriented . . . - ) boundary and oriented

marked points , with all boundary components ad marked

points
Objects are

⑦ N "
C - colored surfaces

+ w/ marked points
"s.

7- T

①v4•€④
( -10 , ie .

C = { 1,2 ,
3
,
- - nilo}



Anywise :

] -manifolds with properly embedded
,
C - colored trivalent

,
oriented

ribbon graphs

,tt*x↳ Kei!
"

:*
T f with

"
corners:')

¥÷:÷÷÷. I
, "•4¥. iii. on

,
"
"° " 3 co-pose when

- boundary colorings

are compatible



Ribbon graph?
Ribbon graphNormal graph

ft ¥En
Why? Up to isotopy Kel boundary

H±¥¥.



- -

' I¥
"

is 11



As for usual / unextended TQFTS
,
an extended VTQFT is

unite
,

a ④ - functor

Z : C - co (2+1)→ Hills
.



In addition to all the axioms for Atiyah TQFT, an extended TQFT

includes axioms that require functor.is/ityu.r.t.cuftiy/past.ig of
C - colored surfaces . Most important for our purposes :

←
natural ④- isomorphism

f- i

tf .I=¥H
GLUING AXIOM



Cutting fpast.ms
"

commute
"

:

*
otzfozt.IE/oxzrgY9
d lls

-
. commutes !to one:* i

w

b
.

"

EEE.tt?zf8IiDoxzf )
along -2



Gluing axiom allows to specify elements of Zfs) by
labelling a complete desk system of S with orientations

and elements of C

.:÷nn?÷
2- I-)



Note
,
e -g .

2- (⑦g) is I - dimensional .

Why?

glue together.

This yields , C -colored surface

homeomorphic to S
.



The ,

2- (s) E Zfs) 2- FOIX)
-

must be l - dims
.oil !!



Another axiom : the color l is special

zi¥¥±÷)
points labelled

by l

tf l¥zf)
Cap off

boundaries
labelled by I



Gluing axioms allow us to bald models of

circuits . Here's
one based on closed surfaces .

S
, Ss Sn

g{A¥ A¥ s

in
h

Given Z and S
,
we
"
focalize

"

quantum rep of
MCGFS)

along the Sis .



Via skins 's torte in Zfs ) lies in a subspace of the form

2- (S , ,c , ) 2- (S2
,
ca ) - - -

⑦ Zfsn .cn/QZfT,cnc2i---,ca)

s
, Ss Sn

g{¥A A¥ s

di t dy
un

dm

a

spire w

Ly m disks removed



'

Iisi
.
⇒ I

2- IT ,
c
. .
.
. . .cn ) -- tf



Zfs) is spanned by subspaces of form

2- (S , ,c , ) tfsz.cn ) - - -

⑦ Zfsn .cn ) ⑦ ZIT, Cuca , - -ya)

as we vary Ci 's in C = { 1,2 , - - - r} ,



setfiagupeirc.at#
Various ways

to do it . - .

Let's fix one subspace , i.e. this one:

2- (s , ,c ) 2- (S2 ,c .

) - - -

⑦ Zfsn
, c) ⑦ ZIT, er , -

. -r )
Look at f -- Pfc ) E MCG (s) , the subgroup
that preserves

this subspace .



Dem twists along orange curves generate MCGfs)

s
, Ss Sn

¥.



Another approach : use
braids
-

Consider disk Dnf ) n point. all colored by c

and boundary colored by l :

I

+Ei• Duk )

Bn acts on 2- (Duk) )



Fix k ,
and consider n copies

of D.Kfc )
glued together alms boundary

Erg - K -

- 3

Drink )

- -

Bk
.

A Dk . K) .



Z (Dk, K ) ) contains of Q 's

of 2- (Dkesfc ) ) - -

2- (Dkk) ) - - ⑦ ZIDKKDEZIDK.ru ) .

Can use subgroup of Bks that preserves
this subspace to build circuits .

What circuits can we simulate?



II. Which TQFTS are BQP - universal ?

⑤bald assume TQFT is unitary and extended .)

Interesting question in all dimensions
.

Has received most attention in dimension 2+1
.

Why ?
• In dimensions.

* 3
, too weak

. . . .

• In dimensions 73 , poorly understood. Expected
to be too weak if

"

fully extended
"

. . .

• In dimension 3
,

extended TQFTS all come from

modular tensor categories via Reshetikhin - Turner

construction
.

"

Combinatorial
"

- ish



Key question
:

given 2-
,
are the colored

surfaces Sorbose quantum representations are

dense in putzes))?

If answer is yes, you can simulate/ approximate
(via Soloway - Kit gov and additional tricks ) arbitrary
quantum circuits

.



Mynqeting 12.2
: Topological quantum computing , I

Universality from density of quantum representations
of braid groups



Fix a C - colored extended unitary TQFT Z and

a color X E C (secretly ,
X is a simple object

in the unitary modular tensor category determined by Z) .
For convenience :
a-

Assume X is
"

self dual : ' meaning 2- treats colored points
EIE + og

and -

•

×
as identical

and also

x¥gag and x¥¥f as identical .

E.g .

the "

special
' '

color ⑧ is self dual . But we will wat

X # I



Define Hilbert space
: CE C

do not need to orient b/c self dual

2- rnix.cl#Zf.f!.q....c: )
n

|Tp¥on a disk

this disk w/ n

colored points will

be denoted Dnc .



B
.

acts
on Z ki Kc ) : e.s. n

-

- y

•

•• Bo Boo Bo

l l l l

t÷÷÷::÷.
* framing

"

⇐ tf
•

i.e .

⇐ Boo Bo Boo BO

FEI X X X X
"

no twisting
"

'



TIE: blackboard framing convention

Problem : Drawing ribbons is annoying

solution :

I :=¥¥
.

Ip :-. qmaT3=ie:n*¥ff
Waging : No Reideeneiste - l - move :B

.



z
⇒



Consider D E 52k
,
L - sphere -42k colored points ,

and this sphere
, E.g. K =L

as d of a 3- ball . :{good •¥ §
133 mastitis

L
-

X is self - dual .

Every K - tangle T in 133 yields a linear
map

2- IT ) : Q→ 2- ( 52k ) ,

hence
,
a vector IT ) (namely , 2- IT ) fl ) ) in

2- ( 52k )=Zf2kiX ,
')



Using this , have several vectors from
"

planar matching
"

tangles
""

K --3

V. V
. •

g q
.

••j •• q
.

•

qq.jp ••ga•



Fix your favorite two crossing less ¥ - tangles ,
e -g.

you
. . - u nd

s

such that IT ) and IS ) linearly independent. Write

Hk= spar ! IT ) , Is ) } EE 2- ( Lti Xii) .

Morally : want to use IT ) and Is > as computational
basis States .

2 issues : orthogonal ? normalized?



Of course Hk Zz E
-
=

spare { 107 , 117 }+. but choose

the isomorphism so IT ) is proportional to 107
, i.e .

109g := IT)
#

this will come back to

WTT haunt us !

Let 117 be any orthonormal
, e.g . Graham - Schmidt

on I -17 , 157 .

Hi
,

with these two basis vectors will be our

qubit inside of 2- (2K ; X , I ) .



Gates? Well
, my dense subset of Vic - ⑦ Cia )

will be quantum universal .

So : should consider Byt
,
acting on 2- (thx

,

- X. d ) ,
since

¢
'

Chitty
,

H# E Zfdkixi ) 2- Idk ix. 1) t Zftkixil )

::.::



If quantum representation

Z : Bye
,

→ Uf -214k .

-

X11 ) )
is dense

,
then

,
in particular every

"

binary gate
"

in

✓ (Ht
.

Hk ) can be approximately implemented by a

braid .

First difficulty :

Hi
,
Ht
, probably not an invariant subspace of Buck

under quantum representation Z : Bye
,

→ Uf -214k .

-

X11 ) ).

Even worse?

May not be Any braid be Byt
,
that preserves the Hk

and acts nontrivially .



Fortunately : while of pipracticallengineering importance , in

principle , these issues can be overcome by being careful

with Soloway - Kitaev theorem .

So
, we will assume there is a finite subset

GE Dyk that generates a dense subgroup of

Ulth
. Hk )



Evaluates Z on braids built from G 's acting on Dmt
,

and restricting to Hk - - - ⑦ Hk ttfnkixil ) yields quarters
circuit . en ich et

•...l..•. Dil
z I
isrgl

'mintiii.Ht
. the Hk

sake G kn:3 A- Bo ¥, if ida



This shows we can simulate arbitrary

quantum circuits with ✗ particles in

the TQFT 2- .

Examples?
F-ones

-Kauffman TQFTG

(proved by
Freedman - Larsen-

Wang )



How do topological invariants

of knots / links / 3 -manifolds

derived from Z relate to

this model of computation?



http://www.ipam.ucla.edu/programs/summer-
schools/graduate-summer-school-mathematics-of-
topological-phases-of-matter/

Meeting 13.2 TQC and 3-manifold invariants

I.
"

Accept probability of circuit
"

=

"
Normalized quantum invaiat

"

I. Approximating quantum invariants w/ quantum computers

IPAM Summer School (UCLA) on

Mathematics of Topological Phases
8/29-9/3

Deadline : 5129



Lightning Review of last time

Given :
- extended unitary (2+1) - dim TQFT 2-

-

a

"

self - dual color
"

✗ (secretly, a self - dual object
in unitary modular tensor category determined by Z)

- two planar matchings 15 of 2k points
such that :

- quantum representation
2- : 134k → U( Zaki Xii ) )

has dense image
- IT ) , Is > linearly independent in 2- Akil

, 1)



Then :

can
"

lift
"

quantum circuit C Ever favorite universal gate set)

acting on n qubits to a braid diagram bee Bznk
such that be acts on subspace

Hk☒Hk☒ - ☒ HKE ZANK ; ✗ 11 )
,

inn
where Hk = span {1-17,157}, in the same way

C acts on 62×062 ☒ - - - ☒ E ? Moreover
, For

the isomorphism E> E Hk identifies concreteness
,F.to) = IT )

fFTF5 1- = •W- qq.i.gg



¢2 Eh ¢4

••••|••••| 1-
És!É¥¥:--i÷¥% .:÷÷¥÷H±÷ .

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Ht
. Hk Hk
É: E- :&

↳ ibis , by
C- Bg

£ Utt ☒① 2)



The encoding C ↳ bc is linear time .

We might call this topological quantum computing
b/c circuits can be encoded inside a TQFT.

However
,
there's an even better reason to call it TQC:

if we are using
C to answer a Yes/No question ,

then the probability of a Yes outcome is closely
related to ✗ - colored link invariant of Bc
"

closed up
"

with copies of T
.



In particular , we call it TQC btc of the answer we now give

to question asked at end of previous meeting :

How do topological invariants

of knots / links / 3-manifolds

derived from Z relate to

this model of computation?



I.
"

Accept probability of circuit
"

=

"
Normalized quantum invaiat

"

Notice we haven't actually used the identity

to) = IT )

FEI
Here's why it matters :

{00 -
- -01C / 00 - - - 08=8/1--1 - - - T / be /TT - - -T>

{ on /clout is probability (ft -11T> )
"

C outputs 10" ) when input /on)

and numerator and denominator of RHS both have

topological interpretation , thanks to TQFT axioms .



ITT - - - T / be /TT - - -T> = 2- ( Ic ) where Bc is

✗ - colored
✓

link diagram as follows :
iibbo-

fT1☒(T1☒ -
- - ☒(T1AHMAN . -MA

Ñc{ be C

UV.VN/--U---UU---U IT> ☒ IT> ☒ - ☒ IT>
✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗



¥¥#: AHHHHH
HEH

.
EH



zfkiukr)= -21K,)- 2- (Ka)
c- 132K

I
(8-111-7)

"

= @T / Id / T ) )
"

= 2-(0×+1)
"
= 2- (Q )

" 't

ribbon
where Q, is ✗-colored

" It and

ribbon0¥ is ✗ - colored
" iii. w/ K - components .



Thus
,

too - --01C / 00 - - - o> = 2- ( Ic )
2- $

×
)
"

E✗anpk_ : Jones- Kauffman TQFT w/ C= Ugsl , -mod ,
✗ =V the defining representation of Ugslz , and

g-
= ed""/K

, then 2- (Dc ) is value of Jones

polynomial of Bc at
q ,

and

2- (g) = g- + g- !

e2-nihoo-e-t.to/'• = 1 - e



Reminder : BQP(G , 's)

G : gate set

Decision problem F:{ Oil}
#
→ { 0,1}= {No, Yes} is in

BQP if :

exists a classical poly time algorithm that converts bit

string ✗ C- { 011 }
"

to
a
G - circuit Cx such that

(Fri )
,
×
,
0
" '

/ ( * / × , Om > 2 213 .

Note : here I'm letting Cx depend on ✗
,
and not

just 1×1 -_ n .



Variation : BQP(G , 's)

G : gate set

Decision problem F:{ Oil}*→ { 0,1}= {No, Yes} is in

BQP if :

exists a classical poly time algorithm that convents bit

string ✗ C- { 011 }
"

to
a
G- circuit C× such that

(Fri ),0i0
" '

/ ( * / On, Om > 2 213 .

So : We might as well allow ✗ to
prepare

✗ from 00 - - - 0 .
We negate fix) for contrived reason .



Ñ

"

in
✗ i ✗2×3 O O O

If ✗= 01 I

111 " I
✗ , +2×3 000

MY1¥ ☒ are:|/as

0 0 0



A reference :

[Kupperberg ,
"

How hard is it to approximate the Jones polynomial?]



theorem (Topological quantum computing )

suppose Z and X satisfy conditions above . Then

the decision problem
f:{0,1B¥ → { Oil}={No, Yes }

:S in BQP if and only if there exists a polynomial
time (classical) algorithm that takes y

C- { 011}
't
to a

braid diagram by such that

① fbn,h¥ 2-3 if Fry > = Yes
2- (

and [2- (5)
2

2- f
"

×
)n£ V3 if Fry )= No .



Remarks

1.* Conditions on ✗ can be relaxed ferg. not self

dual
, use multiple colors to build

a qubit , etc . . . ) .

Unclear what precise
level of generality ought to be

.

2 . I don't know examples of 2- + ✗ such that

2- : Bk → U(Z(Kix ,1 ))
has infinite image for all KIDO BUT

is NEVER dense



are two different Hilbert%•f?;!?•,
" he-0

.
bktnse

spaces

Instead , use
"color preserving subgroup

"

Bz
,
}
of BG

i:*"¥F:}
t.t.t.t.HU



Meeting 14.1 : Computational complexity of TQFT invariants

I. Approximating quantum invariants w/ quantum computers
II. Bad news .

Please do an evall!
Deadline : 5/6



I. Approximating quantum invariants w/ quantum computers

so far :

• built model /s ) of quantum computation using
Ltl - dimensional once

- extended unitary TQFTS
- normalized quantum invariants of knots/ links are

sometimes "

important amplitudes
"

of quantum circuits

1%0--0 / C / 00 - - - o> = 2- (b÷
special knot

constructed from

Circuit

2- f ×Ñ

Note : there are flavors for closed 3-manifolds (instead of

links in 5) using quantum reps of MCG (closed surface)



Natural question :

Is there a
"

converse
" ? Can

quantum computers do something
for topology?



Kind of
. Suppose we have :

-

once extend unitary TQFT 2- and color ✗ knot self -dust )
-

an X - colored ribbon link diagram L

Then
,
in linear time

,
we can

convert L to a quantum circuit

CL such that

* " ""
too --0/4/00--0> = 2- ( b )

-

where b(L) is the bridge number Lita 420 from
knot Atlas

of diagram L .



More precisely : to
"

have Z and X
"

means we have :

-

an identification of Hilbert spaces

2- (Xix ')= ④ 2-( *••;s;;É ) ⇒ ①NH.xs~F.tw/YECd=Nfx4x9
where J

,
e =p or * such that

i.

•
+
•

✗

¥-7T ↳ / o) c. qNH×¥2- ix. * in -7

i-t:ft⇒ZÑ



- description :S (e. g. matrices w/ algebraic entries ) of
"

braiding gates
"

☒ 2-( *•••¥ go.IS#)-=-qNHix)
y

f f-unary braiding

☒ z(*÷.¥Y=→n*×, sate

w



D- 2-( *;¥;;!¥-¥
:* )-erk:D

y

f¥÷
+←

unary twist

☒ z(*ÉÉ¥-s•ÉÉ.ru/=-cirx:x, sate

W



D- 2-

(•×ÉÉ÷_*•×)¥sEs
arks : ✗¥an xD

y

m

f -
o

g,
, , , ,,,

gate

④
z(*;÷¥

) z.cn#.x*n*xD
w



Note : the above local data should be considered as (part of)

a combinatorial / finite algebraic definition of TQFT 2- .

It needs to satisfy Various compatibility conditions
. .
.

If
we wanted to be more precise , should use a

skeletalization of a

Unitary modular tensor

category .



Converting L to CL
:

1 . Put L in
"standard bridge position :

"

✗ s
r

→ É*%. -

÷
.

at
cups /caps

✗
s s

¥¥¥¥¥¥¥¥⇒É÷¥¥Éi÷fi
"

•



2 61 (g)

i:*;÷¥÷¥÷¥ Ñ%☐
¥% ¥:# ☒ ☒

107 107



3
. Easy to check using TÉFT axioms

Koo --0/4/00--0> = 2- ( b )
-

2- f.
×
)HL)

where b(L) is the bridge number

of diagram L .



Now what ?

We can approximate the probability

/ Khoo --014/00--07/2
in usual way via repeated trials

.

In particular, given

N
, can find N - bit binary approximation in 0 ( log N)

.

Suppose IP -1*800--014/00 - - - 07/2/ < E.
The
-

2- ( b )

( P - ( zf.ph/h/ < E
⇒ / Piz /g)

" "Y - |zmpq< e. 12-10×14
""



Now what?

Want to compute an invariant
If
L .

Know :

too - --0/4/00--0 > = 2- (b)
Not

an

2- f.
✗

'""w- of
L

.

It is bridge
number ofSo, LHS is NOT DIAGRAM

.

invariant
.

Ital
"



Summarizing :

Extracting an invariant of L / namely ,

/ 2- f) 12

from the identity
$00 --014100--0 > = 2- (b)

2- f.
✗
1%4

has error that scales exponentially badly

w/ b /L) . Error depends on diagram!



IP .zH§ )
"1- |zmiB< e. 12-1014

""

✗

If 2- (Q ) / BE 1
,
we're happy .

But this NEVER happens unless ✗ is

on Ibelin anyone
"
in which case 2- (c) is

trivial .
Moral : if L is "wide

,

"

it takes a ton of

work to overcome the error .



Can we rescue anything?

D. IF we restricted L to BCL) < 100 ,
we can compute 2-A) in line- time
on a classical computer !If

No dice !

2 . Can we
"

massage
"

L to make bk)

small ? For every N > 01 exists link L such

that b(b) > N For all diagrams
D of L.



3 . Can we massage CL to get a

thinner circuit CI thot is useful?

No
- - -

Freedman
,

Cui - Freedman - Was
"

Complexity Classes as Mathematical

Axioms
"



2. BadNews_

¥-1
✗ * House
quantum reps

of
braid

-

#
gaps

[ Kuperbrs ,
"How hard is it to approximate . - . ?]

b- f) tea or 12h11 > b
is NP-hard (even better

,
# f- hard) to

distinguish .



'

Ef
"

Post BQP =
"

Linear circuits
"

A so

pp


