1 Introduction

We are going to study the following differential equation:

\[y(t) = y_0 + \sum_{k=1}^{\infty} \int_{t_k}^{t} V_i(y(s)) \, ds^i(s) \]

(1.1)

Throughout the paper, we make the following assumptions:

1. The \(V_i \)'s are \(C^\infty \) vector fields on \(\mathbb{R}^d \) with bounded derivatives, and analytic on the set \(\{ y : \|y-y_0\| \leq C \} \) for some \(C > 0 \).

2. The driving path \(x : [0, T] \rightarrow \mathbb{R}^d \) is \(p \)-rough path with given approximating sequence \(\xi_n \) in \(C^{2\infty}(0, T; \mathbb{R}^d) \).

1.1 Motivation and development

when the driving process is fractional Brownian motion with Hurst parameter \(H \):

- H \(\in (1/2, 1/2) \) : smoothness of the density

- H \(\in (1/2, 1/2) \) : gradient bound B-Fouadou, C. Ouyang, S. Tindel-To appear.

Stochastic Taylor series

- Convergence and deterministic estimate for \(1 \leq H < 3/4 \), P. Friz, X. Zhang-2012

- Asymptotic expansion (Castell estimate) for \(H < 3/4 \), P. Friz, X. Zhang-1993

2 Preliminary: Basic notations and facts of rough path theory

Let us introduce the following notations:

1. A word \(I = (i_1, \ldots, i_k) \in \{0, \ldots, d\}^k \) denote \(|I| = 1 \) is the size of \(I \), \(|I| \) number of 0 in \(I \).

2. For \(V_0, \cdots, V_{d+k} \) vector fields on \(\mathbb{R}^d \), \(V_I \) is the Lie derivative of the vector fields \(V_0, \cdots, V_{d+k} \)

\[V_I = [V_0, V_I] + \cdots + [V_{d+k}, V_I] \]

3. Let \(x^I(t) \) be a \(n \)-dimensional rough path, and let us write for simplicity, \(x^I(t) = x^I \) for \(t \)

\[\int_{0^I} \, ds^i = \int_{t_k^I}^{t_{k+1}^I} ds^i(t_k^I) \cdots ds^i(t_k^I) \]

4. It is invariant under permutation

\[\Lambda_{\sigma}(x) = \sum_{\sigma \in S_t^I} (-1)^{\sigma} x_{\sigma} \]

where \(\sigma \) is a permutation of \(i \) and \(\sigma(\cdot) \) is the set of all permutations of \(i \).

5. Taylor expansions and Castell estimates for solutions of stochastic differential equations driven by rough paths

6. We use the notation \(\| x^I \|_{\Delta, \{0, \ldots, d\}} \) as defined below

\[\| x^I \|_{\Delta, \{0, \ldots, d\}} = \sup_{\delta(t)} \left(\sum_{i = 0}^{d+k} \left(\int_{t_k^I}^{t_{k+1}^I} ds^i(t_k^I) \right)^2 \right)^{1/2} \]

for some \(\Delta \), existence and smoothness of the density:

\[\begin{aligned}
\int_{0^I} \, ds^i &= \int_{t_k^I}^{t_{k+1}^I} ds^i(t_k^I) \\
\| x^I \|_{\Delta, \{0, \ldots, d\}} &= \left(\int_{0^I} \, ds^i \right)^{1/2}
\end{aligned} \]

2.1 Taylor expansion for differential equations driven by \(p \)-rough paths

Definition 3.1. The Taylor expansion associated with the differential equation (1.1) is defined as

\[y(t) = y_0 + \sum_{k=1}^{\infty} \int_{t_k^I}^{t_{k+1}^I} V_i(y(s)) \, ds^i(s) \]

(3.1)

where \(x^I(t) \) is the \(i \)-th projection path.

Next we prove the following general result:

Theorem 3.2. Let \(y_0 + \sum_{k=1}^{\infty} \int_0^t V_i(y(s)) \, ds^i(s) \) be the Taylor expansion associated with the equation (1.1) as defined in 3.1.

\[y(t) = y_0 + \sum_{k=1}^{\infty} \int_{t_k^I}^{t_{k+1}^I} V_i(y(s)) \, ds^i(s) \]

is convergent and

\[\| y(t) \|_{\Delta, \{0, \ldots, d\}} \]

Recall if \(I = (i_1, \ldots, i_k) \), we denote

\[P^I = (V_1, \cdots, V_{d+k})^I \]

Theorem 3.3. Let \(\gamma \geq 1 \) and we assume that there exist \(M > 0 \) and \(C \) such that for every word \(I \in \{0, \ldots, d\}^k \)

\[\| P^I \|_{\Delta, \{0, \ldots, d\}} \leq \gamma \|

(3.1)

For \(r > k \), we define \(T_{C^2}(r) = \inf \left\{ \sum_{k=1}^{\infty} \| I \|_{\Delta, \{0, \ldots, d\}} \right\} \)

(3.1)

2. There exists a constant \(Q_{C^2, \Delta, \{0, \ldots, d\}} \) depending on the subscript variables such that when \(t \leq T_{C^2}(r) \),

\[y(t) = y_0 \sum_{k=1}^{\infty} \int_0^t V_i(y(s)) \, ds^i(s) \]

(3.1)

4 Castell expansion and tail estimate for differential equations driven by \(p \)-rough paths

Theorem 4.1. \(0 \leq T_{C^2}(r) = T_{C^2}(r) \) and \(\gamma \geq 1 \) such that for \(t \leq T_{C^2}(r) \),

\[y(t) = y_0 \sum_{k=1}^{\infty} \int_0^t V_i(y(s)) \, ds^i(s) \]

(3.1)

satisfying the following condition: these exist \(\gamma > 0 \), \(0 < r \leq T_{C^2}(r) \)

(3.1)

The above theorem still holds with \(C_2 \) and \(\gamma \).

(4.2)

Remark 4.2. When the driving path \(x : [0, T] \rightarrow \mathbb{R}^d \) is a fractional Brownian motion with Hurst parameter \(H \), \(H < 1/2 \), \(x \) has a lift as a geometric \(p \)-rough path, \(p > 2 \), with given approximating sequence \(\xi_n \) in \(C^{2\infty}(0, T; \mathbb{R}^d) \).

References