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On the Role of Variable Latent Periods in
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The qualitative behaviors of a system of ordinary differential equations and a
system of differential-integral equations, which model the dynamics of disease
transmission for tuberculosis (TB), have been studied. It has been shown that the
dynamics of both models are governed by a reproductive number. All solutions
converge to the origin (the disease-free equilibrium) when this reproductive
number is less than or equal to the critical value one. The disease-free equi-
librium is unstable and there exists a unique positive (endemic) equilibrium if
the reproductive number exceeds one. Moreover, the positive equilibrium is
stable. Our results show that the qualitative behaviors predicted by the model
with arbitrarily distributed latent stage are similar to those given by the TB
model with an exponentially distributed period of latency.

KEY WORDS: Global stability; distributed delay; tuberculosis; mathematical
models.

0. INTRODUCTION

Differential equations and differential-integral equations have been devel-
oped as mathematical models to study the dynamics of disease transmission
for many communicable diseases such as measles, influenza, rubella, and
chicken pox (see Hethcote, 1976, Dietz, 1979; Hethcote et al., 1981; Anderson,
1982; Anderson and May, 1982, 1991; Dietz and Schenzle, 1985; Dietz,
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1985; Schenzle, 1984; Hethcote and Van Ark, 1987; Castillo-Chavez et al.,
1988; Feng, 1994; Feng and Thieme, 1995). The main interest in studying
these models is to understand the long-time behavior of the dynamics of
disease transmission�whether the disease will die out eventually or will per-
sist. A clear answer to this question is practically important to the design
of strategies of the disease control.

The purpose of this paper is to study differential equations and dif-
ferential-integral equations that describe the dynamics of disease transmis-
sion for tuberculosis (TB). One of the important features of TB is that
a relatively small proportion of those infected go on to develop clinical
disease (Smith and Moss, 1994). Most people are assumed to mount an
effective immune response to the initial infection that limits proliferation of
the bacilli and may lead to long-lasting partial immunity both to further
infection and to reactivation of latent bacilli remaining from the original
infection. Data from a variety of sources suggest that the lifetime risk of
developing clinically evident TB after being infected is approximately 100,
with a 900 likelihood of the infection remaining latent (Hopewell, 1994).
Individuals who have latent infection are not clinically ill or capable of
transmitting TB (Miller, 1993). The ability of the organism to survive in a
latent state and then reactivate many years after the original infection
indicates that the tubercle bacillus has enjoyed a long period of coevolution
with the human host, a period that has enabled the bacillus to survive in
small population groups for long periods of time.

The annual risk of developing TB in individuals previously infected
with M. tuberculosis who have survived the initial and higher risk period
that follows infection changes with the age of the individual. The following
annual risks have been estimated: (1) for children, aged 1�6, the risk of
progression is estimated to be around 0.001648, while for those in the 7�12
age range, the risk is about 0.000770 (Comstook et al., 1984); (2) for adults
in the 15�34 age range, the reported risk of progression is between 0.0008
and 0.0009, while for adults who are over 55 years of age, the risk is
reported to be around 0.0010 (Comstock and Edwards, 1975). Since the
development of active TB after infection is highly dependent on the infection
age, one of the important questions in epidemiology will be, What is the
impact of a long and variable latent period on the transmission dynamics
of TB.

Almost all existing mathematical models for TB assume that the dura-
tion of the latent stage is exponentially distributed and hence the models
can be reduced into a system of ordinary differential equations. In this
article we first give a complete analysis for an ODE model introduced early
by Castillo-Chavez and Feng (1997a). We show that there is a global
stability switch from the disease-free equilibrium to the positive endemic
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equilibrium when the basic reproductive number passes through the critical
value 1. We then develop a model for TB with an arbitrarily distributed
latent period, a system of differential equations coupled with an integral
equation. Our investigation shows that the second model shares a dynami-
cal property similar to the ODE model in the following sense: the dynamics
of disease transmission is governed by a reproductive number R0 . If R0�1,
then all solutions converge to the disease-free equilibrium. If R0>1, then
the disease-free equilibrium is unstable and there exists a unique positive
equilibrium which is locally stable.

This paper is organized as follows: Section 1 introduces two models of
TB��one with an exponentially distributed latency period (ODEs) and the
other one with an arbitrarily distributed latent stage (a system of differen-
tial-integral equations). Global stability results of the ODEs are given in
Section 2. The model of differential-integral equations is studied in Sec-
tion 3. We compute the basic reproductive number and study its role in the
dynamics and stability properties of this model. Section 4 details some of
our current efforts and extensions including the incorporation of immigra-
tion and the effects of HIV.

1. THE MODELS

We divide the host population into the following epidemiological
classes or subgroups: susceptibles (S), exposed (E; infected but not infec-
tious), and infected (I; assumed infectious) individuals. N denotes the total
population. Our previous paper (Castillo-Chavez and Feng, 1997a) intro-
duced a simple model for the transmission of TB:

d
dt

S=4&;cS
I
N

&+S+r1E+r2 I

(1.1)

d
dt

E=;cS
I
N

&(++k+r1) E

d
dt

I=kE&(++d+r2) I

N=S+E+I

4 is the constant recruitment rate, c is the per-capita contact rate, ; is the
average number of susceptible individuals infected by one infectious indi-
vidual per contact per unit of time, + is the per-capita natural death rate,
k is the rate at which an individual leaves the latent class by becoming
infectious, d is the per-capita disease-induced death rate, and r1 and r2 are
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the per-capita treatment rates of latent and infectious individuals, respec-
tively. We assumed that an individual can be infected only by contacting
infectious individuals. In the following we let _=;c.

We modify the above model by assuming a variable removal rate
(instead of an exponentially distributed latency period) from the E class to
the I class. Let p(s) be a function representing the proportion of those
individuals exposed at time t who, if alive, are still infected (but not infec-
tious) at time t+s. Then &p* ({) is the rate of removal of individuals from
E class into I class { units of time after exposed. Assume that

p(s)�0, p* (s)�0, p(0)=1

and

|
�

0
p(s) ds<�

Then the number of individuals who have been exposed from time 0 to t
and are still in class E is given by

|
t

0
_S(s)

I(s)
N(s)

p(t&s) e&(++r1)(t&s) ds

Thus the number of individuals who become infectious from time 0 to t
and are still alive and in class I is

|
t

0
|

{

0
_S(s)

I(s)
N(s)

e&(++r1)({&s)[&p* ({&s) e&(++r2+d )(t&{)] ds d{

Then we have the following model:

d
dt

S=4&_S
I
N

&+S+r1E+r2 I

(1.2)

E(t)=E0(t)+|
t

0
_S(s)

I(s)
N(s)

p(t&s) e&(++r1)(t&s) ds

I(t)=|
t

0
|

{

0
_S(s)

I(s)
N(s)

e&(++r1)({&s)[&p* ({&s) e&(++r2+d )(d&{)] ds d{

+I0e&(++r2+d ) t+I0(t)

N=S+E+I
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where E0(t) denotes those individuals in E class at time t=0 and still in the
latent class, I0(t) denotes those initially in class E who have moved into
class I and are still alive at time t, and I0 e&(++r2+d ) t with I0=I(0) repre-
sents those who are infectious at time 0 and are still alive and in the I class.
E0(t) and I0(t) are assumed to have compact support (that is, they vanish
for large enough t).

Results on well-posedness given by Miller (1971) guarantee the existence
and uniqueness of solutions as well as their continuous dependence on
parameters for system (1.2) as a system of nonlinear integral equations.

The positivity of solutions can be proved similarly to Castillo-Chavez et
al. (1989).

2. GLOBAL STABILITY OF THE ENDEMIC EQUILIBRIUM
OF (1.1)

The reproductive number R0 of (1.1) has been derived by Castillo-
Chavez and Feng (1997a) as

R0=
_k

(++d+r2)(++k+r1)

and they have proved the following.

(1) If R0�1, then the disease-free equilibrium of (1.1) is globally
stable.

(2) If R0>1, then system (1.1) has unique positive endemic equi-
librium. Furthermore, the endemic equilibrium is locally asymp-
totically stable.

In this section we show the following global result.

Theorem "I}I If R0>1 and r1++>d, then the endemic equilibrium of
(1.1) is globally asymptotically stable.

Recall that r1 is the treatment rate of latent individuals and d is the dis-
ease-induced death rate. Since the treatment period is about 6�9 months,
r1>1 (year)&1, which should be greater than the value of d in the case
of TB. Therefore the condition r1++>d is easily satisfied. Through the rest
of this section we assume that R0>1 and r1++>d.

On our main approach is to exclude the existence of a periodic solution
and then, by applying the strong Poincare�Bendixson theorem, to conclude
the global stability of the endemic equilibrium.
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From (1.1) we can get an equation for the total population N:

N4 =4&+N&dI

Here `` }=d�dt.'' System (1.1) is equivalent to the following system:

N4 =4&+N&dI

E4 =_(N&E&I)
I
N

&(++k+r1) E (2.1)

I4 =kE&(++d+r2) I

Let V=E+I and rewrite system (2.1)

N4 =4&+N&dI

V4 =_(N&V )
I
N

&(++r1) V+(r1&r2&d ) I (2.2)

I4 =kV&(k+++d+r2) I

It is clear that any nonnegative solution of (2.2) will eventually enter the
set

0� ={(N, V, I ) # R3
+ :

4
+

�N�V�I=
So we will consider only the solutions of (2.2) in 0� .

Lemma "I}I Let (N(t), V(t), I(t)) be any nonnegative solution of
system (2.2). Then

lim inf
t � � \_

N(t)&V(t)
N(t)

+r1&r2&d+�0

Proof. Since R0>1, the disease-free equilibrium is unstable, and then
it is easy to prove that either I(t)#0 or _t0>0 and =>0 such that

I(t)�=, \t�t0

If I(t)#0, then V4 (t)=&(++r1) V(t) implies limt � � V(t)=0. It, there-
fore, follows that

lim inf
t � � \_

N(t)&V(t)
N(t)

+r1&r2&d+=_+r1&r2&d>0
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for _>r2+d (from the assumption R0>1). Now if I(t)�= for all t�t0 , let

g(t)=_
N(t)&V(t)

N(t)
+r1&r2&d=_+r1&r2&d&_

V(t)
N(t)

then we have

g* (t)= &_
V(t)
N(t) \

V4 (t)
V(t)

&
N4 (t)
N(t)+

=&_
I(t)
N(t)

g(t)+_ \r1+
4

N(t)
&

dI(t)
N(t)+

>&_
I(t)
N(t)

g(t)

Here we have used the fact that I�N�1 and

r1+
4

N(t)
&

dI(t)
N(t)

�r1+
4

4�+
&d=r1++&d>0

It follows that

g(t)�g(t0) e&_ �t
t0

(I(s)�N(s)) ds (2.3)

Note that I(s)�N(s)�=+�4 for s�t0 and that

e&(_+=�4)(t&t0) � 0, t � �

Hence

g(t0) e&_ �t
t0

(I(s)�N(s)) ds � 0, t � �

From (2.3) we get

lim inf
t � �

g(t)�0

Now if we let

0={(N, V, I) # R3
+ , N�V�I, _+r1&r2&d�_

V
N =

then any nonnegative solution of system (2.2) will eventually enter 0.
Moreover, it should not be difficult to check that 0 is convex.

Let 0(t)=(N(t), V(t), I(t)) be a nonnegative solution of (2.2).
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Lemma "I"I If 8(t) does not converge to the endemic equilibrium, then
the | limit set of 8(t) contains a periodic solution of (2.2).

Proof. Let system (2.2) be denoted

X4 = f (X ), X=(N, V, I )T # 0 (2.4)

then a straightforward computation shows that

&1 0 0

E&1 �f (X )
�X

E, E=\ 0 1 0 +0 0 &1

is a nonpositive matrix. Hence the lemma follows from the strong
Poincare�Bendixson theorem (Smith, 1995, Theorem 4.1).

The following lemma is given by Muldowney (1990).

Lemma "I/I Suppose X(t) is a periodic solution of (2.4). Then the
periodic solution X(t) is asymptotically stable if the linear system

u* =
�f (X(t))[2]

�X
u (2.5)

is asymptotically stable, where for a 3_3 matrix A=[aij], A[2] is defined
as

a11+a22 a23 &a13

A[2]=\ a32 a11+a33 &a12 +&a31 a21 a22+a33

Theorem "I"I Any periodic solution of (2.2) in 0, if it exists, is
asymptotically stable.

Proof. Let f denote the right-hand side nonlinearity of Eq. (2.2).
Suppose that X(t)=(N(t), V(t), I(t)) is a periodic solution of (2.2) in 0.
Then a direct computation yields that

&+ 0 &d

�f (X(t))
�X

=\_V(t) I(t)
N2(t)

&
_I(t)
N(t)

&+&r1 _&
_V(t)
N(t)

+r1&r2&d+0 k &(k+++d+r2)
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Let u=(x, y, z)T; then (2.5) can be written

x* = &\2++r1+
_I(t)
N(t)+ x+\r1&r2&d+

_(N(t)&V(t))
N(t) + y+dz

y* =kx&(2++d+k+r2) y (2.6)

z* =
_V(t) I(t)

N2(t)
y&\2++d+k+r1+r2+

_I(t)
N(t)+ z

Note that R0>1 implies that

_>d (2.7)

Also from Eqs. (2.2) we have the following equalities:

\r1&r2&d+
_(N(t)&V(t))

N(t) + I(t)
V(t)

=
V4 (t)
V(t)

+++r1 (2.8)

kV(t)
I(t)

=
I4 (t)
I(t)

+++d+k+r2 (2.9)

If we let

D+ f (t)=lim sup
h � 0+

f (t+h)& f (t)
h

then

D+ |x(t)|� &\2++r1+
_I(t)
N(t)+ |x(t)|

(2.10)
+\r1&r2&d+

_(N(t)&V(t))
N(t) + | y(t)|+d |z(t)|

D+ | y(t)|�k |x(t)|&(2++d+k+r2) | y(t)|

D+ |z(t)|�
_V(t) I(t)

N2(t)
| y(t)|&\2++d+k+r1+r2+

_I(t)
N(t)+ |z(t)|

Let

Q(t)=max { |x(t)|,
V(t)
I(t)

| y(t)|,
N(t)
I(t)

|z(t)|=
then using (2.6)�(2.10) we obtain the following inequalities.
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(1) If Q(t)=x(t), then

D+ |x(t)|�\&2+&r1&(_&d )
I(t)
N(t)

+\r1&r2&d+
_(N(t)&V(t))

N(t) + I(t)
N(t)+ |x(t)|

=\&2+&r1&(_&d )
I(t)
N(t)

+
V4 (t)
V(t)

+++r1+ |x(t)|

=\&++
V4 (t)
V(t)+ Q(t)

(2) If Q(t)=(V(t)�I(t)) | y(t)|, then

D+ \V(t)
I(t)

| y(t)|+
=\V4 (t)

V(t)
&

I4 (t)
I(t)+

V(t)
I(t)

| y(t)|+
V(t)
I(t)

D+ | y(t)|

�\V4 (t)
V(t)

&
I4 (t)
I(t)+

V(t)
I(t)

| y(t)|+k
V(t)
I(t)

|x(t)|&(2++d+k+r2)
V(t)
I(t)

| y(t)|

�\V4 (t)
V(t)

&++ V(t)
I(t)

| y(t)|

=\V4 (t)
V(t)

&++ Q(t)

(3) If V(t)=(N(t)�I(t)) |z(t)|, then

D+ \N(t)
I(t)

|z(t)|+
=\N4 (t)

N(t)
&

I4 (t)
I(t)+

I(t)
N(t)

|z(t)|+
N(t)
I(t)

D+ |z(t)|

�\N4 (t)
N(t)

&
I4 (t)
I(t)

+
_I(t)
N(t)+&\2++d+k+r1+r2+

_I(t)
N(t)+

N(t)
I(t)

|z(t)|

�\N4 (t)
N(t)

&
I4 (t)
I(t)

&2+&d&k&r1&r2+ Q(t)
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If we let

h1(t)=&++
V4 (t)
V(t)

h2(t)=
N4 (t)
N(t)

&
I4 (t)
I(t)

&2+&d&k&r1&r2

then we have

Q4 (t)�h(t) Q(t)

where h(t)=max[h1(t), h2(t)]. Now let (N(t), V(t), I(t)) have period T>0.
Since

|
T

0

N4 (t)
N(t)

dt=|
T

0

I4 (t)
I(t)

dt=|
T

0

V4 (t)
V(t)

dt=0

it becomes clear from the expression of hi (t), i=1, 2 that there is a con-
stant #>0 such that

e�0
T h(t) dt<e&#T

Consequently we have

lim
t � �

Q(t)=0

which shows that

lim
t � �

x(t)= lim
t � �

y(t)= lim
t � �

z(t)=0

The result follows from Lemma 2.3.
Using Lemmas 2.1�2.3 and Theorem 2.2 we can prove Theorem 2.1 by

using the same argument given by Li and Muldowney (1995). We provide
an outline of the proof as follows.

Proof of Theorem 2.1. Let 7 be the basin of the attraction of the
positive endemic equilibrium X*=(N*, V*, I*) # 0. To show that X* is
globally asymptotically stable, it suffices to prove that (0"[(4�+, 0, 0)])�
7. Note that the equilibrium X* is locally asymptotically stable; it follows
that 7 is an open set in R3. If (0"([(4�+, 0, 0)])�3 7, then it is clear that
there is an X0 # (0"[(4�+), 0, 0)]) & �7. Let 8(t, X0) be the solution of
(2.2) with 8(0, X0)=X0 . Then 8(t, X0) # 0 for all t�0 and 8(t, X0)
does not converge to the equilibria X* and ((4�+), 0, 0) [note that the
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equilibrium ((4�+), 0, 0) has an unstable manifold pointing to inside 0].
Since X* and ((4�+), 0, 0) are the only equilibria in 0, from Lemma 2.2 it
follows that the | limit set of 8(t, X0) contains a periodic solution X(t)
of (2.2) in 0. Moreover, Theorem 2.2 implies that X(t) is asymptotically
stable. It follows that 8(t, X0) converges to the orbit 1=[X(t) : 0�t�T ]
as t � �, where T is the period of X(t). Since X(t) is asymptotically stable
and X0 # �7, we can pick a point X1 # 7 sufficiently close to X0 so that
the solution 8(t, X1) of (2.2) through X1 converges to 1 as t � �. This
contradicts the definition of 7.

3. ANALYSIS OF SYSTEM (1.2)

The I equation in (1.2) is a Volterra integral equation if we change the
order of integrations as follows

|
t

0
|

t

s
_S(s)

I(s)
N(s)

e&(++r1)({&s)[&p* ({&s) e&(++r2+d )(t&{)] d{ ds

and note that

|
t

s
e&(++r1)({&s)[&p* ({&s) e&(++r2+d )(t&{)] d{

=&e&(++r2+d )(t&s) |
t&s

0
p* (u) e(r2+d&r1) u du=: a(t&s) (3.1)

Therefore we can rewrite the I equation in (1.2)

I(t)=|
t

0
a(t&s) _S(s)

I(s)
N(s)

ds+I0e&(++r2+d ) t+I0(t) (3.2)

Let

B(t)=_S(t)
I(t)
N(t)

Then system (1.2) with the I equation replaced by (3.2) becomes

S4 =4&B&+S+r1E+r2I

E(t)=E0(t)+|
t

0
B(s) p(t&s) e&(++r1)(t&s) ds (3.3)

I(t)=I0 e&(++r2+d ) t+I0(t)+|
t

0
a(t&s) B(s) ds
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The basic reproductive number in this case is given by

R0=_ |
�

0
a({) d{=: _DI (3.4)

where

DI=|
�

0
a({) d{

and a(u) is given by (3.1). Let

DE=|
�

0
p(s) e&(++r1) s ds

then DE is the death-adjusted mean length of the latent period. The relation
between DI and DE is given by

DI=
1

++r2+d
(1&(++r1) DE) (3.5)

Remark. In the case of an exponentially distributed latent period
with a mean length 1�k, we have p(t)=e&kt, and formulae (3.4) and (3.5)
give

R0=_DI=\ _
++d+r2+\

k
++k+r1+

System (3.3) with E0(t)=I0(t)=I0=0 always has the disease-free
equilibrium

(S0 , E0 , I0)=\4
+

, 0, 0+
and has no other constant solution. Since E0(t) and I0(t) are zero for large t,
and e&(++r2+d ) t � 0 as t � �, it could be expected that (4�+, 0, 0) is an
asymptotic equilibrium of (2.1) as t � �. This is shown by the following
theorem.

Theorem /I}I If R0�1, then the disease-free equilibrium (4�+, 0, 0) of
system (3.3) is a global attractor, i.e., limt � �(S(t), E(t), I(t)) � (4�+, 0, 0)
for any positive solutions of system (3.3).

We need the following lemma to prove Theorem 3.1.
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For a bounded real-valued function f on [0, �) we define

f�=lim inf
t � �

f (t), f �=lim sup
t � �

f (t)

Lemma /I} oThiemei }��/p. Let f : [0, �) � R be bounded and twice
differentiable with a bounded second derivative. Let tn � � and f (tn) con-
verge to f � or f� for n � �. Then

f $(tn) � 0, n � �

Proof of Theorem 3.1. Let R0<1. Differentiating the E and I equa-
tions in (3.3) and using the fact that E0(t), I0(t) have compact supports, we
get (for large t)

E4 =B(t)+|
t

0
B(s) p* (t&s) e&(++r1)(t&s) ds&(++r1) E (3.6)

and

I4 = &(++r2+d ) I&|
t

0
B(s) p* (t&s) e&(++r1)(t&s) ds

&(++r2+d ) I0 e&(++r2+d ) t (3.7)

Then

N4 =4&+N&dI&(++r2+d ) I0 e&(++r2+d ) t�4&+N (3.8)

It follows that

N(t)�N(0) e&+t+
4
+

(1&e&+t)

Hence

N��
4
+

Therefore B(t)=_S(t)(I(t)�N(t)) is uniformly bounded on [0, �). Let
R0<1; we claim that I�=0. Suppose, on the contrary, that I �>0. Then
there is a sequence tn � � as n � � such that I(tn) � I � as n � �.
Without loss of generality we can suppose that

tn+1&tn � � as n � � (3.9)
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for otherwise we can choose a subsequence having the property (3.9).
Moreover, by definition we have

I�= lim
t � �

I� (t) with I� (t)=sup
s�t

[I(s)] (3.10)

It follows from the equation for I(t) in (3.3) that

I(tn+1)=I0e&(++r2+d ) tn+1+|
tn

0
a(tn+1&s) B(s) ds+|

tn+1

tn

a(tn+1&s) B(s) ds
(3.11)

Since B(s) is bounded on [0, �) there is an M>0 such that

B(s)�M for all s # [0, �)

Hence the convergence of �a
0 a({) d{ and (3.9) imply that

|
tn

0
a(tn+1&s) B(s) ds�M |

tn+1

tn+1&tn

a({) d{

�M |
�

tn+1&tn

a({) d{ � 0 as n � � (3.12)

Furthermore, using (3.4) and (3.10) we have

|
tn+1

tn

a(tn+1&s) B(s) ds�_I� (tn) |
�

tn

a({) d{�R0 I� (tn) (3.13)

and (3.11)�(3.13) yield that

I��R0 I�

Thus we have R0�1, which is a contradiction. Hence

lim
t � �

I(t)=0 (3.14)

Now with the use of the E equation in (3.3) and the fact that I�=0, one
easily deduces that

E�=0 (3.15)
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Finally, limt � � I(t)=0 implies that B(t) � 0 as t � �. Hence the first
equation in (3.3) gives that

S(t) =
4
+

(1&e&+t)+S(0) e&+t+|
t

0
e&+(t&s)(r1 E(s)+r2I(s)&B(s)) ds

�
4
+

as t � � (3.16)

From (3.14)�(3.16) we have

lim
t � �

(S(t), E(t), I(t))=\4
+

, 0, 0+
This finishes the proof.

The following result shows that when R0>1, the disease will persist in
the population.

Theorem /I"I If R0>1, then the disease-free equilibrium of system
(3.3) is unstable. Furthermore, there exists a constant '>0, such that any
solution (S(t), E(t), I(t)) of (3.3) with I(0)>0 satisfies

lim sup
t � �

I(t)�'

We first prove the following lemma.

Lemma /I"I If R0>1, then any solution (S(t), E(t), I(t)) of (3.3)

with I(0)>0 satisfies

lim sup
t � �

I(t)>0

Proof. Since I0(t) has compact support, we can replace the I equation
in (3.3) by

I(t)=I0 e&(++r2+d ) t+|
t

0
a(t&s) B(s) ds (3.17)

Suppose that the conclusion of the lemma is not true. Then I�=0, or
limt � � I(t)=0. This also implies that (see the proof of Theorem 1)
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limt � � E(t)=0. It follows that limt � � S(t)�N(t)=1. Hence there is a
sequence [kn]>0 such that kn � � as n � �, and

S(t)
N(t)

>1&
1
n

for all t�kn (3.18)

Note, by (3.7), that I4 (t) � 0 as t � �. Whenever I(t) gets close to 0 for
large t it will stay close to 0 for a long time. Also, noting that I(0)>0 and
I�=0, we can find sequences sn , tn such that tn&sn � �, sn � �, and

I(t)�I(tn), t # (sn , tn) (3.19)

Then by (3.17)�(3.19), after choosing a subsequence, we get

I(tn)=I0 e&(++r2+d ) tn+|
tn

0
a(tn&s) _S(s)

I(s)
N(s)

ds

>_ \1&
1
n+ I(tn) |

tn

sn

a(tn&s) ds (3.20)

Note that I(tn)>0 for all n and

|
tn

sn

a(tn&s) ds=|
tn&sn

0
a({) d{ � DI , n � � (3.21)

Then by (3.20) and (3.21), dividing both sides of (3.20) by I(tn) and taking
n � �, we get

1�_DI=R0

But R0>1, a contradiction.

Proof of Theorem 3.2. Note that &p* (t)�0 and

0 � |
tn

0
& p* (tn&s) e&(++r1)(tn&s) ds

= |
tn

0
& p* ({) e&(++r1) { d{

� |
�

0
& p* ({) e&(++r1) { d{

= 1&(++r1) DE , t � �
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From Lemma 3.1 and the E Eq. (3.6),

0�_ \S
I
N+�&_ \S

I
N+�

(1&(++r1) DE)&(++r1) E�

�_ \S
I
N+

�

(1+(++r1) DE)&(++r1) E�

�_I �(1+(++r1) DE)&(++r1) E �

or

E��
_

++r1

(1+(++r1) DE) I� (3.22)

Similarly from the I Eq. (3.7) and Lemma 3.1,

0�_ \ S
N+�

I�(1&(++r1) DE)&(++r2+d ) I�

�_ _1&\E+I
N +

�

& (1&(++r1) DE) I �&(++r2+d ) I � (3.23)

Since I�>0 (see Lemma 3.2), (3.23) yields [see also (3.4) and (3.5)] that

\E+I
N +

�

�1&
1

R0

(3.24)

On the other hand, (3.22) yields

\E+I
N +

�

�\1+
_

++r1

(1+(++r1) DE)+ I�

N�
(3.25)

Let

'=_\1&
1

R0+
4

++d &<_1+
_

++r1

(1+(++r1) DE)&
then '>0 since R0>1. By (3.24), (3.25), and N��4�(++d ), we get

I��'

This finishes the proof.
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According to Miller (1971), an endemic equilibrium of system (3.3),
if it exists, must satisfy the limiting system associated with (3.3), which is
given by the following set of equations:

S4 =4&B&+S+r1E+r2I

E(t)=|
t

&�
B(s) p(t&s) e&(++r1)(t&s) ds

(3.26)

I(t)=|
t

&�
a(t&s) B(s) ds

B(t)=_S(t)
I(t)
N(t)

Let (S*, E*, I*) be a constant solution of (3.26) with I*>0, and let B*=
_S*(I*�N*). Then

I*=B* \|
0

&�
a(t&s) ds+|

t

0
a(t&s) ds+

=B* \|
�

t
a({) d{+|

t

0
a({) d{+

=B*DI (3.27)

and

E*=B*DE (3.28)

Thus, from (3.27),

S*
N*

=
1

_DI
=

1
R0

(3.29)

Note that S*+E*+I*=N*. Then (3.28) and (3.29) yield

I*
N*

=\1&
1

R0+
DI

DI+DE
(3.30)

E*
N*

=\1&
1

R0+
DE

DI+DE

Also note that

4=B*++S*&r1E*&r2 I* (3.31)
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Dividing both sides of (3.31) by N* and using (3.28)�(3.30) we obtain

N*=4R0<_++(R0&1)
1&r1DE&r2DI

DI+DE & (3.32)

Note that

r1DE+r2DI <r1 DE+(++r2+d ) DI

=r1DE+1&(++r1) DE=1&+DE�1

hence N*>0 if R0>1. It is easy to see from (3.30) that only when R0>1
does the unique endemic equilibrium exist, and it is given by

S*=
1

R0

N*

E*=\1&
1

R0+
DE

DI+DE
N*

I*=\1&
1

R0+
DI

DI+DE
N*

where N* is given by (3.32). The stability of the endemic equilibrium is
given in the following result.

Theorem /I/I If R0>1, then the limiting system (3.26) has a unique
endemic equilibrium which is locally asymptotically stable.

Proof. The proof of this result reduces to the study of the local
stability of the trivial equilibrium (X=0) for a Volterra integral equation
of the type

X(t)=F(t)+|
t

0
A(t&s) G(X(s)) ds (3.33)

Let S� =S&S*, E� =E&E*, and I� =I&I*. First we rewrite the S
equation in (3.26)

S(t)=
4
+

(1&e&+t)+S(0) e&+t+|
t

0
(r1E(s)+r2 I(s)&B(s)) e&+(t&s) ds

(3.34)

Since (S*, E*, I*) is an equilibrium of (3.26), it follows that

S*=
4
+

(1&e&+t)+S*e&+t+|
t

0
(R1E*+r2I*&B*) e&+(t&s) ds (3.35)
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with B*=_S*(I*�N*). By subtracting (3.35) from (3.34) we obtain

S� (t)=S� (0) e&+t+|
t

0
(r1 E� (s)+r2I� (s)&(B� (s)&B*)) e&+(t&s) ds (3.36)

where

B� (t)=_(S� (t)+S*)
I� (t)+I*

N� (t)+N*

Similarly from the second and third equations in (3.26) we have

E� (t)=|
0

&�
p(t&s) e&(++r1)(t&s)(B� (s)&B*) ds

+|
t

0
p(t&s) e&(++r1)(t&s)(B� (s)&B*) ds (3.37)

I� (t)=|
0

&�
a(t&s)(B� (s)&B*) ds+|

t

0
a(t&s)(B� (s)&B*) ds (3.38)

Thus Eqs. (3.36)�(3.38) are in the form (3.33) with

F(t)=\
S� (0) e&+t

+
(3.39)

|
0

&�
p(t&s) e&(++r1)(t&s)[B� (s)&B*] ds

|
0

&�
a(t&s)[B� (s)&B*] ds

0 &e&+{ e&+{

A({)=\0 p({) e&(++r1) { 0 +0 a({) 0

S�
G(X )=\ B� &B* +r1E� +r2I�

S�
X=\E� +I�
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It remains to show that the conditions specified in Miller's theorem are
satisfied. To simplify expressions, let

x=
S*
N*

, y=
E*
N*

, z=
I*
N*

Note that

1 0 0

DG(0)=\_z( y+z) &_xz _x(x+ y)+ (3.40)

0 r1 r2

Then det DG(0)=&r2_xz{0 since x>0, z>0 when R0>1. Condition (i)
is satisfied.

Next we check condition (ii). Note that by (3.39) and (3.40),

&e&+{m3 e&+{(m2+r1) e&+{(r2&m1)

A({) DG(0)=\p({) e&(++r1) {m3 & p({) e&(++r1) {m2 p({) e&(++r1) {m1+a({) m3 &a({) m2 a({) m1

where

m1=_x(x+ y), m2=_xz, m3=_z( y+z)

Then

H(*)=det \In&|
�

0
e&*{ A({) DG(0) d{+

=det \
1+

m3

++*
&

m2+r1

++*
m1&r2

++* +&m3P(*) 1+m2 P(*) &m1 P(*)

&m3Q(*) m2 Q(*) 1&m1Q(*)

where

P(*)=|
�

0
p({) e&(++r1+*) { d{, Q(*)=|

�

0
a({) e&*{ d{
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After canceling terms we get

H(*)=1+
m3

++*
+

m2

++r1+*
&\m1+

r2m3

++*+ |
�

0
a({) e&*{ d{

+
m2

++r1+* |
�

0
p* ({) e&(++r1+*) { d{ (3.41)

It is easier to estimate |H(*)| if we express ��
0 p* ({) e&(++r1+*) { d{ in terms

of ��
0 a({) e&*{ d{. Using the definition of a(t) [see (3.1)] we have

|
�

0
p* ({) e&(++r1+*) { d{=&(++r2+d+*) |

�

0
a({) e&*{ d{ (3.42)

Then (3.41) and (3.42) yield

|H(*)|� } 1+
m3

++*
+

m2

++r1+* }
& } \m1+m2+

r2m3

++*
+

m2(r2+d&r1)
++r1+* + |

�

0
a({) e&*{ d{ } (3.43)

Note that ��
0 |a({) e&*{| d{�DI , for any * with R*�0. Also note that

x=
S*
N*

=
1

R0

_DI =R0
(3.44)

(m1+m2) DI =_x(x+ y+z) DI=1

max[r2DI , (r2+d&r1) DI]<(r2+d++) DI=1&(++r1) DE<1

Then by (3.42)�(3.44) we can show that

|H(*)|� } 1+
m3

++*
+

m2

++r1+* }
& } (m1+m2) DI+

m3

++*
r2DI+

m2

++r1+*
(r2+d&r1) DI }

>0

whenever R*�0.
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Furthermore, clearly for any =0>0, there is a $0>0 such that [sup |F(t)|:
0�t<�]�=0 and F(t) � 0 as t � �, for any |S� ({)|�$0 , |E� ({)|�$0 ,
|I� ({)|�$0 , and &��{�0.

This finishes the proof.

The global stability of the endemic equilibrium is expected if certain
conditions are satisfied. However, we have not been able to prove this at
this moment. The main difficulty arises from the fact that (1.2) is infinite
dimensional. Some stability results have been established for epidemiologi-
cal models with different structures than (1.2). For example, Stech and
Williams (1981) show a nice global stability result for the endemic equi-
librium in a model with an arbitrarily distributed immunity period; their
result was recently extended by Thieme and van den Driessche (2000) to
diseases that cause fatalities. To the best of our knowledge there is no
efficient approach so far to handle the global structure of a system like
(1.2) except for some monotone systems. This will be our further research
effort.

4. DISCUSSION

In this paper we have prove the global stability of the endemic equi-
librium of an ODE model of Tb that we developed previously (see Castillo-
Chavez and Feng, 1997a). We have also constructed a TB model with a
distributed delay to study the effect of variable periods of latency on the
transmission dynamics of Tb at the population level. These long and
variable periods of latency were no considered in our previous paper, as
our emphasis there was on the study of resistant TB. The purpose of this
paper is to look at the effects of variable (rather than exponentially dis-
tributed) periods of latency on the dynamics of TB.

Li and Muldowney (1995) have shown the global stability of the
endemic equilibrium for the SEIR model. Our basic TB model (1.1) in this
article is different from their model. We considered an ``SEIS '' type, with
individuals moving back to the S class from both the E and the I classes
due to treatments, and we proved a similar global stability result for such
a model. We also found that the addition of an arbitrarily distributed
latency period to the basic TB model does not alter the qualitative
dynamics of TB. The disease either dies out or remains endemic regardless
of the shape of the incubation� latent period distribution. Blower et al.
(1995) have developed a differential equation model with ``two'' latent
groups: one group involves those who will develop TB quickly after
primary infection, while the second group is formed of those who will
develop the disease slowly through endogenous reactivation. Since there is
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only one group of susceptibles in their model, the ``two-group'' effect is
achieved by assuming that some fixed proportion of those who become
infected (per unit of time) follows the fast route, while the remaining
proportion follows the slow route. The results of the model is this article
show that this artificial division plays no role in the qualitative dynamics.
The fixed fraction model (referred to by Blower et al., 1995) actually
depends on factors that are not part of Blower et al.'s model and�or the
model in this article (e.g., the age of the infected person). Age is relevant
factor, but it cannot just be assume a priori that a fixed proportion of
individuals in a particular age bracket develops active TB. Contact rates��
conductive to TB transmission��are very likely to be age-dependent and
the mixing between age classes is nonlinear. Therefore, to study the
dynamics of ``fast'' versus ``slow'' TB, one must really use an age-structured
model. The analysis of age-structured models, while complex, is not
impossible (see Castillo-Chavez and Feng, 1998). Blower et al. (1995) com-
pute R0 but study the dynamics of their model exclusivity through simula-
tions which turn out to be ``typical.'' Our analytical results have confirmed
their limited simulations not only for the ``slow�fast'' TB model but also for
models where individuals progress toward active TB at ``all'' possible rates.
The fact that long and variable periods of ``latency'' do not lead to complex
dynamics has been worked out before. For example, Castillo-Chavez et al.
(1989) established that long and variable periods of infection for the
transmission dynamics of HIV�AIDS have the same qualitative behavior
as the dynamics of models with unrealistic exponentially distributed latent�
infectious periods. However, factors such as exogenous infection and
heterogeneous contact rates can indeed generate radically dynamics dif-
ferent from those given by the class of models discussed in this article.
Exogenous reinfection is capable of sustaining TB even when the basic
reproductive number R0<1 (see Castillo-Chavez and Feng, 1997b). Com-
putation of the reproductive number in this article helps us understand the
role that key epidemiological parameters play in the maintenance of TB��
including the role of the parameters associated with an arbitrary distribu-
tion that models long and variable periods of latency.

To summarize our perspective, a person infected with TB may develop
active TB in a variety of ways. One possibility is that a person may develop
active TB as a result of an endogenous infection��the subject of this article.
In this case, there is no impact on the qualitative dynamics of the transmis-
sion dynamics of TB. A second possibility is that such a person may
develop active TB as a consequence of exogenous reinfection [i.e., acquir-
ing a new infection from another infectious individual (Smith and Moss,
1994)]. Our results show that exogenous reinfection can have a drastic
effect on the qualitative dynamics of TB (see Castillo-Chavez et al., 2000).
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The incorporation of exogenous reinfection into the basic TB model (1.1)
allows for the possibility of a subcritical bifurcation. Thus, a ``backward''
bifurcation of an endemic equilibrium may occur at the critical value of the
reproductive number R0=1, and hence, our system can have multiple
endemic equilibria for R0<1. This type of behavior has been observed in
recent epidemiological models in the context of sexually transmitted dis-
eases (see Hadeler and Castillo-Chavez, 1995).

Immigration effects on TB incidence rates have been found in several
developed countries. The influence of immigrants from high-prevalence
countries on the notifications in a low-prevalence country can be observed
in recent data from Switzerland. Undetected active disease in immigrants is
a significant sources of infection among uninfected immigrants, as well as
for children of immigrant parents born in the new country. HIV also plays
an important role in TB transmission. We are particularly interested in
looking at the impact of immigration of infected individuals from countries
where the prevalence of TB is high on TB dynamics and reactivation of
latent TB among the HIV-infected, as well as their effects on disease control
programs.
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