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Abstract

Malaria has long been a scourge to humans. The exceptionally high mortality in some regions has led to

strong selection for resistance, even at the cost of increased risk of potentially fatal red blood cell defor-

mities in some offspring. In particular, genes that confers resistance to malaria when they appear in het-
erozygous individuals are known to lead to sickle-cell anemia, or other blood diseases, when they appear in

homozygous form. Thus, there is balancing selection against the evolution of resistance, with the strength

of that selection dependent upon malaria prevalence. Over longer time scales, the increased frequency of

resistance in a population might be expected to decrease the frequency of malaria and reduce selection for

resistance. However, possession of the sickle-cell gene leads to longer-lasting parasitaemia in heterozygote

individuals, and therefore the presence of resistance may actually increase infection prevalence. In this

paper, we explore the interplay among these processes, operating over very different time scales. In par-

ticular, we show that on the fast time scale of malarial dynamics, the disease level reaches an equilibrium;
on the slower, evolutionary time scale, this equilibrium tracks gene frequency. We analyze the slow time

scale dynamics to investigate the impact of malaria on the evolution of resistance.
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1. Introduction

The dynamics of ecological communities require attention to the interplay between population
dynamics and evolutionary change in interacting species [1]. In such systems, fitnesses are not
constant, but may vary not only with gene frequencies, but also with species densities. Because of
the tight interaction between individuals of two species, host–parasite interactions provide the
ideal systems for investigating such coevolutionary interactions. Of particular interest has been
the interplay between the evolution of virulence and resistance [2–7] or the maintenance of sex in
species where parthenogenesis is possible [8–10]. These models tend to focus on the evolution of
parasites, or the role of parasites on host evolution. Few models couple host evolution with
parasite population dynamics, in part because parasites have shorter generation times, and thus
evolve more quickly, meaning that the models must interface processes occurring at very different
time scales [11–13].

A classic co-evolutionary dynamic occurs between humans and Plasmodium falciparum the
mosquito-borne protozoan blood parasite that causes malaria. Falciparum malaria is a leading
cause of global mortality, and mathematical models of malaria transmission have a long and rich
history, dating back to Ross [14]. Malaria is also associated with several genetic blood disorders,
notably sickle-cell anemia in individuals who are homozygous for the S-gene. The gene causing
sickling provides a classic example of overdominance; heterozygotes are more fit than either
homozygote when malaria is present [15,16]. Classical models demonstrating the stability of the
balanced polymorphism appear in almost every basic course in population genetics, but with the
assumption that the fitnesses of the three genotypes are constant. On the other hand, attention to
the epidemiology of malaria typically leads to models that ignore explicit genetic structures in the
host populations [17]. In this paper, we seek to bring these two perspectives into contact with each
other, and to develop an understanding of the interplay among processes at very different time
scales.

The special features of sickle-cell dynamics have not been addressed in the few previous
mathematical studies of parasite–host coevolution in malaria [18] or more general infectious-
disease terms [11–13,19]. Determining the quantitative relationship between the mortality rates
from malaria and the frequency of the S-gene in a population is an old and difficult problem
[15,16,20]. They are complicated because infectious-disease epidemiology and human demography
occur on dramatically different temporal scales: parasite levels in infected humans fluctuate over
hours to days, malaria incidence in a human population waxes and wanes from month to month
and season to season, and human generations change over decades. Moreover, reproductive
decisions by humans may change the fitness costs associated with the S-gene, so the classical
formulas based on discrete generations are biased [21]. Also, though not considered here, other
heritable hematological and immunological traits may influence individual response to malaria
infection, so that actual levels of protection are likely to be polygenic.

The equilibrium frequency of the S-gene is a balance between excess mortality from malaria in
individuals lacking the S-gene, and high mortality rates of S-gene homozygotes from sickle-cell
disease. The different evolutionary time scales of hosts and parasites and the complicated biology
raise interesting questions about the endemic dynamics of malaria. Increased frequency of the S-
gene might produce marginal benefits to other individuals in the population if the lower parasi-
temia in S-gene heterozygotes reduces transmission of P. falciparum to mosquitoes. However,
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since malaria selects for the S-gene, an S-gene acting �selfishly� might evolve to enhance Plas-

modium transmission, and thus increase its own frequency. Protective effects of the S-gene are
associated with reduced parasitemia and clinical symptoms [22–25]. It is not clear whether the S-
gene substantially changes susceptibility to infection or transmission to mosquitoes. Field and
laboratory experiments indicate that, despite lower densities of the non-transmissible blood forms
of the parasite, the infectivity of the transmissible blood forms is enhanced in sickle-cell indi-
viduals [26–29]. As it seems likely that this enhancement is mediated by reticulocytosis in the host,
a life-history trade-off in the parasite, or both, it is at least circumstantially connected with a
wealth of topics in malaria-parasite evolution, including speciation [30–32] and pathogenesis
[33,34].

We develop a mathematical model that explicitly couples malaria transmission dynamics with
changes in the frequency of the S-gene, and use the model to examine the temporal scales over
which human population genetics respond to malaria. To deal with the complications of multiple
temporal scales, we apply singular perturbation techniques to separate components into fast and
slow parts, and analyze each separately. Similar methods have been used less formally to develop
approximations to some aspects of malaria mortality [20].
2. Model

2.1. Model formulation

Although the population dynamics of malaria and the population genetics of the sickle-cell
genes occur on very different time scales, it is straightforward to develop an appropriate model
relating these. The high mortality associated with malaria has led to strong historical selection for
resistance, and hence for single major genes conferring resistance in heterozygotes, despite
the associated burden borne by homozygotes. We thus build on existing detailed knowledge of the
genetics of resistance, focusing on a single locus with two alleles. Our foundation is thus the
classical Ross–McDonald model for the spread of malaria, expanded to include the relevant
genetic structure of the host.

Let u1 denote the density of uninfected humans of genotype AA. Similarly, u2 denotes the
population density of genotype AS. Furthermore, let v1 and v2 represent the population densities
of infected individuals of each genotype. We ignore SS individuals; high mortality rates from
sickle-cell disease are typical in countries with high transmission rates of falciparum malaria, so
these individuals rarely reach reproductive maturity. An extended model including the SS indi-
viduals can be studied using similar methods but it is very difficult to interpret the threshold
conditions due to the complexity of the model. Finally, let z be the fraction of mosquitoes that are
transmitting malaria. The fraction of the AS individuals in the population is
w ¼ u2 þ v2
N

;

where N is the total human population density, u1 þ v1 þ u2 þ v2. The frequency of the S gene is
q ¼ w=2 and the frequency of the A gene is denoted p ¼ 1� q.
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Let bðNÞ denote the human per-capita birth rate, possibly density dependent, with a constant
per-capita natural mortality of m. To couple ecology and evolution, we make two assumptions.
First, we assume that the ratio of mosquitoes to humans is a constant, c. This is a standard
assumption in the modelling of malaria (ever since the original Ross–McDonald model). Any
other assumption about variability in the ratio of mosquitoes to humans (M/H) would need to be
justified. No evidence exists to suggest that the transmission dynamics of malaria have dramat-
ically changed in hyper-endemic areas of Africa over the last several centuries. Malaria control
has been mainly local, with no lasting effects on the long-term averages. M/H may have changed
locally, but we have no evidence to support a general increase or decrease, despite changes in
human population density. The main exception to all this may have been a decline in malaria
mortality due to the use of chloroquine, a trend that has reversed with the spread of chloroquine
resistance [35]. Most malaria mortality occurs in sub-Saharan Africa where Anopheles gambiae is
the most important vector. A. gambiae thrives in and around the habitats created by humans, so
humans create conditions favorable for A. gambiae. Over the time-scale of the last 200–300 years,
the constant M/H assumption is a reasonable one, for any particular area, in part because of the
ecology of A. gambiae. The most important exception to many of these rules is urban malaria,
because of the concentration of humans into cities. The urbanization of Africa is a fairly recent
phenomenon, and malaria remains endemic in many African cities [36]. Urbanization may affect
M/H, but evidence is lacking. For now, the constant M/H assumption remains the reasonable null
model and is valid over all the time scales being explicitly considered in this paper.

However, over the evolutionary time periods longer than those considered explicitly in this
paper, this ratio surely will change, due to fluctuations about the mean as well as secular changes,
for example associated with global climate change. Model predictions may be very sensitive to
relaxation of the assumption. This simply reinforces the importance of investigating the dynamics
of our baseline model, which can illuminate the factors sustaining the present quasi-steady state,
so that future research can predict how climate change, by affecting the distribution of mosqui-
toes, might upset the balance between malaria dynamics, evolved resistance, and associated blood
diseases. In this regard, it will also be important to incorporate spatial differences in climate
and disease, and the importance of changing patterns of human mobility. Thus the model pre-
sented in this paper should be regarded as a foundation on which to build in a world of accel-
erating change.

Second, we assume that the fraction of each genotype born into the population is denoted Pi
given by
P1 ¼ p2; P2 ¼ 2pq:
The transmission of malaria between humans and mosquitoes is governed by some basic epide-
miological parameters. The human biting rate is denoted a, and average life of an infected
mosquito is 1=d. The probability that a human develops a parasitemia from a bite is denoted hi;
we assume that h1 P h2. The disease induced death rate is denoted ai, and we assume that a1 � a2.
In addition, we consider that AS individuals may die faster than AA individuals from causes other
than malaria, and the excess rate of mortality for AS individuals is m. The probability that a
mosquito acquires plasmodium from biting an individual of type i is denoted by /i. The average
time until a victim of malaria recovers, denoted 1=ci, may be different in AA and AS individuals.
We have listed all the variables and parameters in Table 1.



Table 1

Definition of variables and parameters

Name Description Notes

i ¼ 1 AA individuals

i ¼ 2 AS individuals

ui Number of uninfected humans of genotype i
vi Number of infected humans of genotype i
xi Fraction of humans that are infected and have genotype i

ui
N

yi Fraction of humans that are uninfected and have genotype i
vi
Nz Fraction of mosquitoes with plasmodium

w Frequency of AS individuals x2 þ y2
N Population size

q Frequency of S-gene
w
2

hi Probability a human of type i acquires a parasitemia per bite h1 > h2
ci Rate of recovery from malaria c1 < c2
a Biting rate per human per mosquito

c Number of mosquitoes per human

/i Probability a mosquito acquires plasmodium from biting a human

of type i
/1 > /2

d Mosquito death rate

m Per-capita natural human death rate

ai Per-capita malaria-induced death rate of humans of type i a1 P a2
m Extra death rate of AS individuals due to the sickle-cell genes

bðNÞ Per-capita Birth Rate of humans

P1 Fraction of total births of genotype AA 1� wþ w2

4

P2 Fraction of total births of genotype AS w 1� w
2

� �
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The changes in population density of each genotype with each infection status are described by
a set of five coupled ordinary differential equations:
_ui ¼ PibðNÞN � miui � ahiczui þ civi;

_vi ¼ ahiczui � ðmi þ ci þ aiÞvi;

_z ¼ ð1� zÞ a/1

v1
N

�
þ a/2

v2
N

�
� dz; i ¼ 1; 2;

ð1Þ
where m1 ¼ m and m2 ¼ mþ m.

2.2. Mathematical analysis of the model

It is both mathematically convenient and biologically relevant to introduce new variables for
prevalence of malaria infections in each genotype, xi ¼ ui=N and yi ¼ vi=N , as well as the fre-
quency of the S-gene, w ¼ x2 þ y2 ¼ 2q. The equations in the new variables are derived from the
original (1) using the chain rule. We note for clarification that x1 þ y1 þ x2 þ y2 ¼ 1 and
x1 þ y1 ¼ 1� w. We also introduce notation to reduce the number of parameters, bhi ¼ ahic,
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bvi ¼ a/i, i ¼ 1; 2. Then we obtain the following equivalent system to (1) in the terms that describe
important epidemiological, demographic, and population genetic quantities, y1, y2, z, w, and N :
_y1 ¼ bh1zð1� w� y1Þ � ðm1 þ c1 þ a1Þy1 � y1 _N=N ;

_y2 ¼ bh2zðw� y2Þ � ðm2 þ c2 þ a2Þy2 � y2 _N=N ;

_z ¼ ð1� zÞðbv1y1 þ bv2y2Þ � dz;
_w ¼ P2bðNÞ � a2y2 � m2w� w _N=N ;
_N ¼ NððP1 þ P2ÞbðNÞ � m1ð1� wÞ � m2w� a1y1 � a2y2Þ:

8>>>>><
>>>>>:

ð2Þ
Although most of the equations assume a general birth function bðNÞ, our detailed mathe-
matical analysis for the specific case in which bðNÞ is a density dependent per-capita birth
function, bðNÞ ¼ bð1� N=KÞ, where b is a constant (the maximum birth rate when population
size is small) and K is approximately the density dependent reduction in birth rate.

2.2.1. Fast dynamics of epidemics
The relevant parameters vary across many orders of magnitude. For example, the demographic

parameters (b and mi) and the genetic parameters (ai) are on the order of 1/decades, and the
malaria disease parameters (bhi, ci, bvi, and d) are on the order of 1/days. Hence, although
the malaria disease dynamics and the changes in genetic composition are two coupled processes,
the former occurs on a much faster time scale than the latter. Let mi ¼ �~mi, ai ¼ �~ai, and b ¼ �~b
with � > 0 being small. We can use this fact to simplify the mathematical analysis of the full model
with the use of singular perturbation techniques, which allows us to separate the time scales of the
different processes (see Appendix A). By letting � ¼ 0 we obtain the following system for the fast
dynamics (see Appendix A):
_y1 ¼ bh1zð1� y1 � wÞ � c1y1;
_y2 ¼ bh2zðw� y2Þ � c2y2;
_z ¼ ð1� zÞðbv1y1 þ bv2y2Þ � dz;

8<
: ð3Þ
which describes the epidemics of malaria for a given distribution of genotypes determined by w.
Here, on the fast time scale, w is considered as a parameter. On the fast time scale, the basic
reproductive number of malaria disease can be calculated as the leading eigenvalue of the next
generation matrix [37] (see Appendix A):
R0 ¼ R1ð1� wÞ þR2w; ð4Þ

where
Ri ¼
bhibvi

cid
; i ¼ 1; 2 ð5Þ
involves parameters associated with malaria transmission between mosquitoes and humans of
genotype i. In fact, Ri (or

ffiffiffiffiffiffi
Ri

p
) is the basic reproductive number when the population consists of

entirely humans of genotype i. We show in Appendix A that, when R0 < 1, the disease-free
equilibrium of the system (3) is locally asymptotically stable; and when R0 > 1, the system (3) has
a unique non-trivial equilibrium E� ¼ ðy�1 ; y�2 ; z�Þ given by
y�1 ¼
Th1z�

1þ Th1z�
ð1� wÞ; y�2 ¼

Th2z�

1þ Th2z�
w; ð6Þ
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where z� is the unique positive solution of a quadratic equation whose coefficients are functions of
w (see (A.7) and (A.8)), and
Thi ¼
bhi

ci
; i ¼ 1; 2: ð7Þ
2.2.2. Slow dynamics of population genetics
By using the re-scaled time s ¼ �t, we can re-write the full system (2) as
�
dy1
ds

¼ bh1zð1� y1 � wÞ � c1y1 � �y1ðð~m1 � ~m2Þw

þ ~a1ð1� y1Þ � ~a2y2 þ ðP1 þ P2Þ~bðNÞÞ;

�
dy2
ds

¼ bh2zðw� y2Þ � c2y2 � �y2ðð~m1 � ~m2Þðw� 1Þ

� ~a1y1 þ ~a2ð1� y2Þ þ ðP1 þ P2Þ~bðNÞÞ;

�
dz
ds

¼ ð1� zÞðbv1y1 þ bv2y2Þ � dz;

dw
ds

¼ ðð1� wÞP2 � wP1Þ~bðNÞ þ ð~m1 � ~m2Þwð1� wÞ

þ ~a1wy1 � ~a2ð1� wÞy2;
dN
ds

¼ NððP1 þ P2Þ~bðNÞ � ~m1ð1� wÞ � ~m2w� ~a1y1 � ~a2y2Þ:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ
This system has a two dimensional slow manifold (see Appendix A):
M ¼ fðy1; y2; z;w;NÞ : y1 ¼ y�1ðw;NÞ; y2 ¼ y�2ðw;NÞ; z ¼ z�ðw;NÞg;
which is normally hyperbolically stable as it consists of a set of such equilibria of the fast system
(3). y�1 and y�2 are given in (6). The slow dynamics on M is described by the equations
dw
ds

¼ ðð1� wÞP2 � wP1ÞbðNÞ þ ð~m1 � ~m2Þwð1� wÞ
þ ~a1wy�1 � ~a2ð1� wÞy�2 ;

dN
ds

¼ NððP1 þ P2Þ~bðNÞ � ~m1ð1� wÞ � ~m2w� ~a1y�1 � ~a2y�2Þ:

8>>>><
>>>>:

ð9Þ
Since M is normally hyperbolically stable, singular perturbation theory allows us to study the
system (8) by studying the reduced slow system (9). In other words, if the dynamics of the system
(9) can be characterized via bifurcations, then the bifurcating dynamics on the slow manifold M
are structurally stable hence robust subject to perturbations. Therefore, results from the slow
system will provide bifurcation properties of the system (8) as well as the full system (2).

For our bifurcation analysis of the slow dynamics, we choose the bifurcation parameter to be
the fitness of the S-gene, F, which we define to be
F ¼ 1

w
dw
ds

� ����� : ð10Þ

w¼0
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Recall that w ¼ 2q. Hence, we can use w to represent the abundance of the S-gene, and hence, F
represents the per-capita growth rate of sickle-cell genes when the gene is initially introduced into
a population. That is, F describes the invasion ability of the S-gene.

Noticing that q ¼ w=2, p ¼ 1� w=2 and
P1 þ P2 ¼ 1� w2

4
; ð1� wÞP2 � wP1 ¼ � 1

2
w2 1

�
� w

2

�
; ð11Þ
we can re-write the slow system (9) as
dw
ds

¼ � 1

2
~bðNÞw2 1� w

2

� �
þ g1ðwÞ;

dN
ds

¼ N ~bðNÞ 1� w2

4

� �
� g2ðwÞ

� �
;

8>><
>>: ð12Þ
where
g1ðwÞ ¼ ð~m1 � ~m2Þwþ ~a1wy�1 � ~a2ð1� wÞy�2 ;
g2ðwÞ ¼ ~m1ð1� wÞ þ ~m2wþ ~a1y�1 þ ~a2y�2 :

ð13Þ
Then the following formula can be derived:
1

w
dw
ds

� �����
w¼0

¼ ð~m1 þ W1~a1Þ � ~m2

�
þ W2~a2

�
; ð14Þ
where
W1 ¼
Th1ðR1 � 1Þ
ð1þ Th1ÞR1

; W2 ¼
Th2ðR1 � 1Þ

ð1þ Th1ÞR1 þ Th1 � Th2
: ð15Þ
Let
ri ¼ ~mi þ Wi~ai: ð16Þ
Then ri P 0 is the total per-capita death rate of type i individuals weighted by Wi, which depends
only on malaria epidemiological parameters. The biological interpretation of F suggests that,
when the S-gene is initially introduced into a population, it may or may establish itself depending
on whether the fitness is positive or negative, which is equivalent to whether r2 < r1 or r2 > r1.
This is indeed confirmed by both analytical and numerical studies of the slow system. Fig. 1 is a
bifurcation diagram of the slow dynamics with r1 and r2 being the bifurcation parameters. In Fig.
1, ~b�1 is a constant larger than the maximum per-capita birth rate ~b (¼ b=�); r2 ¼ hðr1Þ is a
decreasing function satisfying hð~bÞ ¼ ~b and hð~b�Þ ¼ 0. Some of the results from this bifurcation
diagram are summarized as follows:

Case 1: r2 < r1 (positive fitness).
(a) If r1 6

~b, or ~b < r1 < ~b� and r2 < hðr1Þ, then there is a unique interior equilibrium
E� ¼ ðw�;N�Þ which is globally asymptotically stable (g.a.s.).



Fig. 1. Bifurcation diagram in the ðr1; r2Þ plane. In the shaded region, there is a unique non-trivial equilibrium E�
which is a global attractor. In the region above the curve r2 ¼ hðr1Þ and below the line r2 ¼ r1, the total population size

NðtÞ goes to zero as t ! 1. In the region above the line r2 ¼ r1, the S-gene will go extinction if its initial value is small.

However, there maybe multiple equilibria in which case the S-gene may establish itself if its initial value is large.
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(b) If ~b < r1 < ~b� and r2 > hðr1Þ, then the population will be wiped out (due to the death rates
being too much higher than the �birth� rate) with the fraction of AS individuals tending to a
positive constant as t ! 1.

Case 2: r2 > r1 (negative fitness). The fraction of AS individuals will tend to zero as t ! 1,
whereas the total population size will tend to either K (when r2 is small) or zero (when
r2 is large).

In either case, the system (9) has neither periodic solutions nor homoclinic loops.
An analytic proof of these results can be found in [39]. We point out that Case 1(b) is due to the

standard incidence form of infection rate used in the z equation. Similar scenarios have been
observed in other population models (see for example [38]), and such scenarios may not be present
if the mass action form is used. The standard incidence form is more appropriate if the number of
contacts is relatively constant, independent of density. Fig. 2 demonstrates some numerical cal-
culations of solutions of the system (9) for ðr1; r2Þ in the shaded region. Fig. 3 shows a couple of
possible scenarios when r1 < r2. It is interesting to notice that, in Fig. 3(b), there are two locally
asymptotically stable equilibria. One is the boundary equilibrium at which N > 0 and w ¼ 0, and
the other one is one of the two interior equilibria. The regions of attraction of the two stable
equilibria are divided by the separatrix formed by the stable manifold of the unstable interior
equilibrium (see Fig. 4). This type of bi-stability can occur in several different ways, three of which
are listed in Fig. 4. The three diagrams (a)–(c) in Fig. 4 are for cases when the system (9) has none,
or one, or two equilibria on the positive w-axis. It shows that, if wð0Þ is small i.e., the initial
population size of AS individuals is small, then the S-gene will go extinct due to a negative fitness.
However, if for some reason (e.g. immigration of AS individuals) w suddenly becomes large (large



Fig. 2. Phase portraits of the slow system for ðr1; r2Þ in the shaded region. In both cases the S-gene frequency will

stabilize at a positive level.

Fig. 3. Phase portraits of the slow system when the fitness is negative. (a) is for the case when r2 is large. The S-gene
goes extinction while the total population size goes to its carrying capacity. (b) is for the case when r2 is small. There are

two interior equilibria. The one with a lower value of w is unstable and the one with a higher value of w is stable.

(a) (c)(b)

Fig. 4. Some bi-stability scenarios for r2 > r1. In (a) there is no non-trivial boundary equilibrium on the w-axis. In (b)

there is one non-trivial boundary equilibrium on the w-axis. In (c) there are two non-trivial boundary equilibria on the

w-axis.
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enough to be on the right side of the separatrix), then the S-gene will be able to establish itself,
even though the fitness is negative.
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3. Evolution of associated traits

We see from the last section that whether or not the S-gene can invade and establish itself in a
population is determined by whether the fitness coefficient is positive or negative. Recall that the
fitness is given by the difference r1 � r2, where the total death rate ri is a sum of weighted death
rates mi and ai (see (16)) with the weight Wi given by (15). The quantity Wi contains all the malaria
transmission parameters. Noticing that ~m1 � ~m2 ¼ �~m and using (10) and (15) we have
Fig. 5

of hu

/1 ¼ 0

but it
F ¼ �~mþ ~a1Th1ðR1 � 1Þ
ð1þ Th1ÞR1

� ~a2Th2ðR1 � 1Þ
ð1þ Th1ÞR1 þ Th1 � Th2

: ð17Þ
Let
Tvi ¼
bvi

d
; i ¼ 1; 2: ð18Þ
Then Ri ¼ ThiTvi (see (5) and (7)). Notice that Thi involves parameters related to malaria infection
of humans of genotype i by mosquitoes, and Tvi involves parameters related to malaria infection of
mosquitoes by humans of genotype i. Clearly, these transmission coefficients affect F in non-
linear ways. Fig. 5 illustrates how the fitness F depends on the Th1 and Th2. It shows that for any
given value of Th1, the fitness does not seem to change much with Th2, which implies that any
changes in malaria transmission rate h2 or in the recovery rate c2 in AS individuals will unlikely
change the fitness. On the other hand, an increase in the malaria transmission rate h1 or a decrease
in the recovery rate c1 in AA individuals will lead to a dramatic increase in the fitness. This
illustrate one example of possible impact of malaria prevalence on the selection of the S-gene.

To asses how the frequency of S-gene may influence the endemic level of malaria, we examine
the threshold quantity R0 given in (4). Rewrite (4) as R0 ¼ ðR2 �R1ÞwþR1. It is easy to see that
R0 is either a decreasing function of w if R2 < R1, or an increasing function of w if R2 > R1.
2
3

4
5

6

Th1
2

2.5

3

3.5

4

Th2

-1
0
1

2
3

4
5Th1

. Plot of the fitness F vs. the transmission coefficient of humans of AA type (Th1) and the transmission coefficient

mans of AS type (Th2). The parameter values are: m ¼ 0:00002; a1 ¼ 0:0001; a2 ¼ 0:00005; � ¼ 10�4; a ¼ 1;
:05; d ¼ 0:07 (which gives Tv1 ¼ 0:7). It shows that F increases with Th2 and changes from negative to positive,

is not very sensitive to changes in Th2 if Th2 is not too small.



(a)

(b) (c)

Fig. 6. (a) is a plot ofR0 vs. w and c2. It shows thatR0 decreases with w for smaller c2 and increases with w for larger c2.
(b) and (c) plot solutions of the fast system (3) for different values of c2. y1 þ y2 represents the fraction of the population

infected with malaria. The parameter values are: c1 ¼ 0:05, h1 ¼ 0:06, h2 ¼ 0:05, /1 ¼ 0:05, /2 ¼ 0:09, b ¼ 0:00004,
m ¼ 0:00003. The values for other parameters are the same as that used for Fig. 5.
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Recall that w ¼ 2q and q is the frequency of S-gene in the population. Relative magnitudes of R1

and R2 are determined by several epidemiological parameters. Fig. 6(a) illustrates an example by
changing c2 (1=c2 is the duration of malaria infection in AS individuals). It shows thatR0 increases
with w for smaller values of c2 and decreases with w for larger values of c2. In general, the disease
prevalence increases with R0. This is confirmed by numerical simulations of the fast system (3),
which is shown in Fig. 6(a)–(c). y1 þ y2 is the fraction of the population infected with malaria.
Notice that in Fig. 6(b), higher S-gene frequencies corresponds to higher endemic levels of malaria
at equilibrium.

Thus, increased duration of parasitaemia in heterozygotes (decreasing c2) leads to higher en-
demic prevalence of malaria and increased selection for the S-gene. These changes have very little
effect on F. This raises the interesting question of whether traits that affect c2 are under selection.
Thus, traits associated with disease transmission may coevolve with traits associated with disease
resistance.
4. Discussion

By coupling the dynamics of the epidemiology of malaria and the genetics of sickle cell gene, our
model allows for joint investigation of (1) impact of malaria on the selection of S-gene (2) influence
of genetic composition of a population on the maintenance of malaria, and (3) evolution of
associated traits. Our results are based on threshold conditions derived from our model by sepa-
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rating malaria disease dynamics on the fast time scale and the dynamics of S-gene on the slow time
scale and by conducting stability analysis. The epidemic threshold condition R0 > 1 (under which
malaria is endemic) is related to the S-gene frequency through w, and the threshold condition for
the fitness of S-gene F > 0 (under which the rare gene is able to invade and maintain itself) de-
pends on epidemiological parameters as well as the endemic level of malaria. We illustrate the uses
of these thresholds for the studies of questions related to (1)–(3) in Section 3. These results cannot
be obtained from epidemiology models without genetic or genetic models without epidemics.

Standard population genetic models often use discrete-generations, and assume that when both
parents are heterozygous, a fourth of all births are S-gene homozygotes. In our models, com-
pensatory reproductive decisions can reduce the fitness costs associated with the S-gene [21]. For
example, S-gene homozygote children may be lost in utero or early in infancy. In these cases, the
interbirth interval may be shorter following the birth of S-gene homozygote offspring. Alterna-
tively, voluntary decisions to limit family size may reduce the fitness cost of the S-gene; pairings to
S-gene heterozygotes will tend to have the same number of children. The net effect in both cases is
a marginal delay in the birth rate, and the total fitness cost of the S-gene is somewhat lower than
that predicted by the standard models.

The S-gene may affect the expression of several traits associated with malaria transmission
dynamics. The S-gene can improve fitness by reducing the probability of becoming parasitaemic,
by reducing the duration of a parasitaemia, or by reducing the probability of developing malaria
per parasitaemia. If one of the former mechanism is responsible for the enhanced fitness of S-gene
heterozygotes, the population would benefit from increased frequency of the S-gene because
heterozygotes would be a sink for Plasmodium, serving the same function as alternative hosts.
Alternatively, the S-gene may reduce disease, influencing the expression of traits that increase the
selective pressure acting on it. The evidence is mixed, but tends to support the notion that the gene
is acting selfishly. One experiment challenged individuals with infectious mosquitoes and showed
that 2/15 S-gene heterozygotes developed parasitaemia compared with 14/15 homozygotes lacking
the S-gene [15]. On the other hand, the prevalence of parasitaemia is similar in S-gene hetero-
zygotes compared with non-S homozygotes [22–25]. If there is a real difference in the probability
of becoming parasitaemic, but no real difference in the prevalence of parasitaemia, parasitaemia
may last longer in S-gene heteroygotes. Other evidence suggests that transmission to mosquitoes is
higher from S-gene heterozygotes [26–29]. On balance, it seems that increased frequency of the
S-gene leads to enhanced transmission rates for Plasmodium.

There are several intrinsic shortcomings in the Macdonald [40] model of malaria transmission,
on which our model is based. In particular, it does not account for the complex effects of acquired
immunity on transmission [41], for fluctuations in transmission intensity [42], or for the existence
of multiple parasite genotypes and meiotic recombination among them [43]. These shortcomings
may have unexpected importance in the current context, in that recent evidence suggests that
sickle-cell trait may differentially affect different parasite genotypes, as defined at immunogenic
loci, and may influence superinfection frequencies [44,45]. Our model includes several other
simplifications with respect to empirical data; for instance, our assumption that all sickle ho-
mozygotes (SS) die is only an approximation [46]. Furthermore, relationships between malaria
prevalence (or incidence) and malaria-induced mortality (or morbidity) are far more complex than
assumed here: Plasmodium infection is necessary but by no means sufficient to produce disease in
malaria [47,48].
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Sickle cell (HbS) is a hemoglobinopathy, specifically a variant hemoglobin, and there is some
evidence that other variant hemoglobins (HbC in West Africa, and HbE or HbF – persistent fetal
hemoglobin – in SE Asia and the SW Pacific) are protective against malaria as well. Individuals
with one S and one C allele are not uncommon in West Africa, and, at least in vitro, parasite
growth in SC cells is especially poor. The thalassemias are also hemoglobinopathies, and may be
the most common monogenic diseases of humans. Perhaps the best recent evidence for their
malaria-protective effects is through �micro-epidemiological� studies on alpha-thalassemias in the
SW Pacific; there is also some evidence for milder anemias and increased survivorship in
concurrent alpha-thalassemic/sickle relative to sickle-trait patients. Beta-thalassemias are
fairly common in the formerly malarious Mediterranean/Middle East; it has been argued that
their lower frequencies in Africa are due to �competition� with sickle. A red-blood-cell cytoske-
letal defect (ovalocytosis, in SE Asia) appears to produce resistance – though not complete
blockage – of cell invasion by parasites. G6PD deficiency (a maternally transmitted hereditary
alteration in the host NADPH pathway used by the parasite) and several inherited immunological
characteristics (e.g. specific HLA haplotypes) seem to affect malaria infections as well. We have
not considered any possible interactions of sickle-cell and other malaria-protective traits (e.g.
[49]). Our model does represent significant progress toward solving the old and difficult problems
noted in the Introduction, however, and, we hope, toward the solutions of more general problems
related to host heterogeneity and its influence on infectious-disease agents. Finally, it provides a
foundation upon which an investigation on the challenges posed by environmental changes
associated with climate and land use can be based.
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Appendix A. Calculation of R0 and separation of scales

Let E0 ¼ ð0; 0; 0Þ be the disease-free equilibrium of the fast system (3). Then from the Jacobian
matrix at E0 we obtain the next generation matrix (see [37,38]):
0 0
bh1ð1� wÞ

d

0 0
bh2w
d

bv1

c1

bv2

c2
0;

0
BBBBB@

1
CCCCCA
whose leading eigenvalue is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bv1bh1ð1� wÞ

dc1
þ bv2bh2w

dc2

s
:
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This quantity gives the basic reproductive number. However, to simplify the notation we define
our R0 to be this number squared:
R0 ¼
bv1bh1ð1� wÞ

dc1
þ bv2bh2w

dc2
¼ R1ð1� wÞ þR2w:
The threshold condition remains the same, i.e., E0 is l.a.s if R0 < 1 and unstable if R0 > 1.
Assume that the demographic parameters (mi; ai and b) are much smaller than malaria-related

disease parameters. Let mi ¼ �~mi; ai ¼ �~ai, and b ¼ �~b with � being small. Rewrite the system (2) in
the form
dU
dt

¼ GðUÞ þ �F ðUÞ; ðA:1Þ
where
U ¼

y1
y2
z
w
N

0
BBBB@

1
CCCCA; GðUÞ ¼

bh1zð1� w� y1Þ � c1y1
bh2zðw� y2Þ � c2y2

ð1� zÞðbv1y1 þ bv2y2Þ � dz
0

0

0
BBBB@

1
CCCCA; ðA:2Þ
and
F ¼

F1
F2
F3
F4
F5

0
BBBB@

1
CCCCA ¼

�ð~mþ ~a1Þy1 � y1~f ðNÞ
�ð~mþ ~a2Þy2 � y2~f ðNÞ

0

P2~bðNÞ � ~a2y2 � ~m2w� w~f ðNÞ
NððP1 þ P2Þ~bðNÞ � ~m1ð1� wÞ � ~m2w� ~a1y1 � ~a2y2Þ

0
BBBB@

1
CCCCA; ðA:3Þ
where
~f ðNÞ ¼ ðP1 þ P2Þ~bðNÞ � ~m1ð1� wÞ � ~m2w� ~a1y1 � ~a2y2:
The fast dynamics at the disease scale are given by (A.1) when taking � ¼ 0:
dU
dt

¼ GðUÞ; ðA:4Þ
which is equivalent to the system (3). Recall that (see (5), (7), and (18))
Thi ¼
bhi

ci
; Tvi ¼

bvi

d
; Ri ¼ ThiTvi; i ¼ 1; 2: ðA:5Þ
Let E� ¼ ðy�1 ; y�2 ; z�;w;NÞ be a non-trivial equilibrium of (A.4) with w and N being parameters.
Setting the right hand side of (3) equal to zero we get
y�1 ¼
Th1z�

1þ Th1z�
ð1� wÞ; y�2 ¼

Th2z�

1þ Th2z�
w; ðA:6Þ
and z� is a solution of the equation
k0z2 þ k1zþ k2 ¼ 0 ðA:7Þ
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with
k0 ¼ Th1Th2 þR1Th2ð1� wÞ þR2Th1w;

k1 ¼ Th1 þ Th2 þR1ð1� Th2Þð1� wÞ þR2ð1� Th1Þw;
k2 ¼ 1�R1ð1� wÞ �R2w:

ðA:8Þ
If R0 ¼ R1ð1� wÞ þR2w < 1, then k2 ¼ 1�R0 > 0. To show that Eq. (A.7) has no positive
solution, it suffices to show that k1 > 0. Let T0 ¼ maxfTh1; Th1g. Then Th1 þ Th2 � T0R0 P 0. Hence,
k1 ¼ Th1 þ Th2 þR0 �R1Th2ð1� wÞ �R2Th1wP Th1 þ Th2 þR0 � T0R0 > 0;
and hence, E� is not biologically feasible.
If R0 > 1, then k2 ¼ 1�R0 < 0. It is easy to show that k0 > 0 as 0 < w < 1. Hence, when

R0 > 1 Eq. (A.7) has a unique positive solution which we denote by z�. Let hðzÞ denote the
function of z given by the left hand side of (A.7). Notice that hð0Þ ¼ k2 < 0, hð1Þ ¼ 1þ Th1Th2 þ
Th1 þ Th2 > 0, and hðz�Þ ¼ 0. Hence, 0 < z� < 1. From (A.6) we also have that 0 < y�i < 1, i ¼ 1; 2.
It follows that an endemic equilibrium E� ¼ ðy�1 ; y�2 ; z�Þ exists and is unique.

The stability of E� is determined by the eigenvalues of the following matrix H (which is the
upper left block of the Jacobian matrix DGðE�Þ):
H ¼
�ðbh1z

� þ c1Þ 0 bh1ð1� w� y�1Þ
0 �ðbh2z

� þ c2Þ bh2ðw� y�2Þ
bv1ð1� z�Þ bv2ð1� z�Þ �ðbv1y

�
1 þ bv2y

�
2 þ dÞ

0
@

1
A:
The matrix H can be written in the form H ¼ M � D, where
M ¼
0 0 bh1ð1� w� y�1Þ
0 0 bh2ðw� y�2Þ

bv1ð1� z�Þ bv2ð1� z�Þ 0

0
@

1
A;

D ¼
bh1z

� þ c1 0 0

0 bh2z
� þ c2 0

0 0 bv1y
�
1 þ bv2y

�
2 þ d

0
@

1
A:
Notice that M P 0, i.e., all elements of M are non-negative (recall that 1� w� y1 ¼ x1 > 0 and
w� y2 ¼ x2 > 0) and D is a diagonal matrix with positive diagonal elements. It is known (see [37])
that all eigenvalues of H have negative real parts if and only if the dominant eigenvalue of the
matrix MD�1 is less than one. The eigenvalues of MD�1 are
k0 ¼ 0;
and
k� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bh1ð1� w� y�1Þ
bv1y

�
1 þ bv2y

�
2 þ d

� �
bv1ð1� z�Þ
bh1z� þ c1

� �
þ bh2ðw� y�2Þ

bv1y
�
1 þ bv2y

�
2 þ d

� �
bv2ð1� z�Þ
bh2z� þ c2

� �s
:

Obviously, k0 < 1 and k� < 1. Using the following equalities (which are obtained by setting the
right hand side of (3) equal to zero):
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z�1 ¼
bv1y

�
1 þ bv2y

�
2

bv1y
�
1 þ bv2y

�
2 þ d

¼ c1y
�
1

bh1ð1� w� y�1Þ
;

z�2 ¼
bv1y

�
1 þ bv2y

�
2

bv1y
�
1 þ bv2y

�
2 þ d

¼ c2y
�
2

bh2ðw� y�2Þ
;

and noticing that bhiz
� þ ci > ci, i ¼ 1; 2, and that 0 < z� < 1, we get
k2þ <
c1y

�
1

bv1y
�
1 þ bv2y

�
2

bv1ð1� z�Þ
c1

þ c2y
�
2

bv1y
�
1 þ bv2y

�
2

bv2ð1� z�Þ
c2

¼ 1� z� < 1:
It follows that kþ < 1 and that E� is locally asymptotically stable. Thus, the system (A.1) for � ¼ 0
contains a two-dimensional stable manifold of steady states
U0ðw;NÞ ¼ ðy�1 ; y�2 ; z�;w;NÞT: ðA:9Þ
The equations for the slow dynamics can be derived following the approach of [12]. Assume that
the solutions to (A.1) have the form
UðtÞ ¼ U0ðwðtÞ;NðtÞÞ þ �U1ðt; �Þ; ðA:10Þ
and let dU0

dt ¼ ð0; 0; 0; dw
dt ;

dN
dt Þ

T
. Then using Eqs. (A.1) and (A.10) we have
dU
dt

¼ dU0

dt
þ �

oU1

ot
¼ GðU0ðw;NÞÞ þ �DGðU0ðw;NÞÞU1 þ �F ðU0ðw;NÞÞ þOð�2Þ; ðA:11Þ
where DGðU0ðw;NÞÞ denotes the Jacobian matrix of G at U0ðw;NÞ. Notice that GðU0ðw;NÞÞ ¼ 0.
Also notice that DGðU0ðw;NÞÞ has three eigenvalues with negative real part and two zero
eigenvalues. Two left eigenvectors of DGðU0ðw;NÞÞ corresponding to the two zero eigenvalues
can be computed as
V1 ¼ ð0; 0; 0; 1; 0Þ; V2 ¼ ð0; 0; 0; 0; 1Þ: ðA:12Þ
Let V ¼ V1
V2

� �
. Then using similar arguments given in [12] we know that in (A.10) the variable U1

can be chosen such that V oU1

ot ¼ 0. Hence, when neglecting higher order terms in �, (A.11) yields
V
dU0

dt
¼ �VF : ðA:13Þ
Let s ¼ �t. Then (A.13) can be written as
V
dU0

ds
¼ VF ; ðA:14Þ
which is exactly the system (9) in Section 2. Using perturbation results by Hoppensteadt [50,51] we
know that the system (A.14) provides a good approximation to the slow dynamics of (A.1) when �
is small. The separation of scales can also be justified using geometric theory of singular per-
turbations due to Fenichel [52] (see [39] for more details).
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