
Author's personal copy

J. Differential Equations 245 (2008) 442–467

www.elsevier.com/locate/jde

Bifurcation analysis of a plant–herbivore model
with toxin-determined functional response ✩

Rongsong Liu a, Zhilan Feng a,∗, Huaiping Zhu b, Donald L. DeAngelis c

a Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
b Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada

c Department of Biology, University of Miami, Coral Gables, FL 33124, USA

Received 12 July 2007

Available online 3 December 2007

Abstract

A system of ordinary differential equations is considered which models the plant–herbivore interactions
mediated by a toxin-determined functional response. The new functional response is a modification of the
traditional Holling Type II functional response by explicitly including a reduction in the consumption of
plants by the herbivore due to chemical defenses. A detailed bifurcation analysis of the system reveals
a rich array of possible behaviors including cyclical dynamics through Hopf bifurcations and homoclinic
bifurcation. The results are obtained not only analytically but also confirmed and extended numerically.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Plant–herbivore interactions have been studied previously by many researchers using differ-
ential equations and theories in dynamical systems. One of the most commonly employed de-
scriptions of the plant consumption by the herbivore is the traditional Holling Type II functional
response [5,6], which assumes that the growth rate of herbivore is a monotonically increasing
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function of plant density. However, this will not be appropriate if the chemical defense of plants
is considered, in which case the negative effect of plant toxin on herbivore can lead to a decrease
in the growth rate when the plant density is high.

To explore the impact of plant toxicity on the dynamics of plant–herbivore interactions, we
developed ordinary differential equation models that include a toxin-determined functional re-
sponse (see [4,8]). The toxin-determined functional response is a modification of the traditional
Holling Type II response by including the negative effect of toxin on herbivore growth, which
can overwhelm the positive effect of biomass ingestion at sufficiently high plant toxicant con-
centrations [2,3].

The inclusion of plant toxicity in the functional response makes the equations highly nonlinear
with much more complex dynamics. The model considered in [8] is a 3-dimensional system
which includes one herbivore population and two plant species with different levels of toxicity
and competition ability. Numerical studies of that model show that the system exhibits Hopf and
period doubling bifurcations for parameter values in certain regions. Analysis of the 3-D system
seems to be very difficult and hence mathematical results obtained in [8] are very limited.

In [4], a simpler 2-D model is considered which includes only one plant species and one
herbivore population. The 2-dimensional system reads:

dN

dt
= rN

(
1 − N

K

)
− C(N)P,

dP

dt
= BC(N)P − dP, (1.1)

where

C(N) = f (N)

(
1 − f (N)

4G

)
(1.2)

and f (N) is the Holling Type II functional response given by

f (N) = eσN

1 + heσN
. (1.3)

e is the encounter rate, which depends on the movement velocity of the consumer and its radius
of detection of food items. The parameter σ (0 < σ � 1) is the fraction of food items encountered
that the herbivore ingests which may be a function of N , while h is the handling time for each
prey item, which incorporates the time required for the digestive tract to handle the item. B is
the conversion of consumed plant biomass into new herbivore biomass (through both growth and
reproduction), d is the per capita rate of herbivore death due to causes unrelated to plant toxicity,
r is the plant intrinsic growth rate, and K is the carrying capacity. All parameters and their units
are defined in Table 1.

As the article [4] is intended to be more biologically oriented, it focused on the model de-
scription of outcomes and omitted most of the mathematical analyses. In this paper, we provide
a detailed bifurcation analysis of the system (1.1).

To see clearly the role of plant toxin and herbivore browsing, we choose G and d to be
the bifurcation parameters. Notice that G measures the toxicity level and d reflects intensity of
herbivory. We show that there exists a Hopf bifurcation curve, d = dhopf(G), such that an interior
equilibrium loses its stability when d passes the curve and a stable periodic solution appears. We
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Table 1
Definition of parameters used in model (1.1)

Parameter Definition

r Intrinsic growth rate of plant
T Amount of toxin contained per unit plant
M Max amount of toxin a herbivore can consume per unit time
G =M/T

h Time for handling one unit of plant
e Rate of encounter per unit plant
σ Fraction of food items encountered that the herbivore ingests
B Conversion constant (herbivore biomass per unit of plant)
K Carrying capacity of plant
α Scaling constant
d Per capital death rate of herbivore unrelated to plant toxicity

also show that the system has a codimension two bifurcation at a point (Ĝ, d̂) and determine a
homoclinic bifurcation curve, d = dhom(G), such that the limit cycle disappears when d passes
the curve. This bifurcation is not present in models with Holling Type II functional response or
other functional response models of plant–mammal interactions (e.g., [1,9,10,13]).

Another interesting behavior of system (1.1) is that bi-stable attractors are possible. For exam-
ple, the system has two stable equilibria for (G,d) in a certain region, or one stable limit cycle
and one stable equilibrium for (G,d) in another region. These dynamics represent important
implications of the toxin-determined functional response (see [4]).

As done in [4], we consider two cases in terms of the function σ(N). One is the case in
which σ(N) is a constant, which assumes that, although the herbivore’s rate of ingestion of plant
biomass is negatively affected by increasing ingestion of toxicant relative to the load it can safely
deal with, the herbivore is not able to prevent lethal levels in toxicant intake. The other case is
when σ(N) is not constant, which incorporates the adaptation of the herbivore to control its rate
of consumption of plant items when that is likely to lead to lethal toxicant intake. These two
cases generate dramatically different outcomes (see the bifurcation diagrams).

This paper is organized as follows. Analysis of the model for the case when σ(N) is a constant
is given in Section 2. Section 3 considers the case when σ(N) is not constant, and Section 4
discusses the results and future work.

2. Analysis of model (1.1) when σ is constant

As discussed in [8], in order for the consumption function C(N) to be nonnegative and below
the maximum consumption rate 1/h, we have the following constraint on G:

1

4h
< G <

1

h
. (2.1)

For constant σ(N) = σ0, C(N) is either monotonically increasing, reaching an asymptote (see
Fig. 1(a)) for 1

4h
< G < 1

2h
, or unimodal, declining to an asymptote after reaching a peak G

at Nm, where

Nm = 2G

eσ0(1 − 2hG)
, (2.2)
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Fig. 1. Graphs of the functional response C(N). (a) C(N) is monotonically increasing. (b) C(N) is unimodal and reaches
maximum at Nm = 2G

eσ0(1−2hG)
.

for 1
2h

< G < 1
h

(see Fig. 1(b)). The case when C(N) is monotone, i.e., when 1
4h

< G < 1
2h

, has
been analyzed in [8]. In this paper, we are concerned with only the case when C(N) is unimodal,
i.e., when 1

2h
< G < 1

h
.

2.1. Equilibria

System (1.1) always has two boundary equilibria:

E0 = (N,P ) = (0,0) and EK = (K,0).

Besides E0 and EK , there may be up to two interior equilibria. Denote an interior equilibrium by
E∗ = (N∗,P ∗) with N∗ > 0 and P ∗ > 0. For ease of presentation, introduce the function g(N):

g(N) = rN(1 − N/K)

C(N)
. (2.3)

Then, E∗ can be determined by solving for N and P using the equations

BC(N) − d = 0, g(N) − P = 0. (2.4)

Clearly, for E∗ to be biologically feasible, we require

0 < N∗ < K, P ∗ > 0.

Rewrite g(N) as

g(N) = r(K − N)(1 + heσ0N)2

eσ0K(1 + bN)
with b = eσ0

(
h − 1

4G

)
, (2.5)

and notice the following properties of g(N) for later use: (i) g(N) intersects the positive N -
axis at a single point N = K and the intersection with the P -axis is positive; (ii) it has a single
hump (maximum) at a point Nh ∈ (0,K); and (iii) g(K) = 0 and g′(K) < 0. A graph of g(N) is
sketched in Fig. 2.
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Fig. 2. Plot of the function g(N). It has a single hump for N ∈ (0,K) with g(K) = 0 and g′(K) < 0.

The existence of E∗ depends on several parameters. To investigate the impact of plant toxicity
and herbivore browsing, we choose G and d as our bifurcation parameters and consider bifurca-
tions in the (G,d) plane. To solve (2.4) for N , we use the equation BC(N) − d = 0, which is
equivalent to the following quadratic equation

c2N
2 + c1N + c0 = 0, (2.6)

where

c0 = −dG, c1 = eσ0G(B − 2dh), c2 = (eσ0)
2(BhG − B/4 − dh2G

)
.

The discriminant of (2.6) is Δv = BG(BG − d). Thus, (2.6) has real solutions if and only if
d < BG, which provides a threshold line:

d̄(G) = BG. (2.7)

(2.6) has two (one or zero) real solutions (provided that c2 �= 0) when d < d̄ (= d̄ or > d̄), which
we denote by N1 and N2 with N1 < N2. In the following, we will only consider the region

Ω =
{
(G,d)

∣∣∣ 1

4h
< G <

1

2h
, 0 � d � d̄(G)

}
. (2.8)

For (G,d) ∈ Ω , Eq. (2.6) has two solutions:

N∗
1 = G(B − 2dh) − √

Δv

2eσ0(
B
4 + dh2G − BhG)

, N∗
2 = G(B − 2dh) + √

Δv

2eσ0(
B
4 + dh2G − BhG)

. (2.9)

Recall that the interior equilibrium E∗
i = (N∗

i , P ∗
i ), where P ∗

i = g(N∗
i ), exists if and only if

N∗
i ∈ (0,K) for i = 1 or 2. Using this constraint we can get another threshold condition. Let Nm

denote the plant population size at which C(N) has its maximum value, G, then

Nm = 2G

eσ0(1 − 2hG)
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Fig. 3. The N∗ component of an interior equilibrium is shown as an intersection of the curve C(N) with a horizontal
line d/B . If d/B is between the values of C(K) and G then there are two intersections N∗

1 and N∗
2 in (0,K), corre-

sponding to two interior equilibria. If d/B is smaller than C(K) then there is only one intersection N∗
1 in (0,K) (not

labeled), corresponding to the unique interior equilibrium.

(see Fig. 3). From Fig. 3 we see that the number of solutions of (2.6) in (0,K) also depends on
the relation between Nm and K . Therefore, the condition Nm = K determines a threshold value
G = Gc:

Gc = eσ0K

2(1 + heσ0K)
, (2.10)

such that

Nm < (= or >)K if and only if G < (= or >)Gc.

Clearly, Gc < 1/2h. It is easy to verify that

Gc >
1

4h
if and only if K >

1

heσ0
. (2.11)

Condition (2.11) is easy to satisfy if the carrying capacity K is large.
If G < Gc, then Nm < K . In this case, we always have N1 ∈ (0,K), and hence, E∗

1 always
exists. E∗

2 exists if only if N2 < K . Thus, by setting N2 = K , which is equivalent to BC(K) = d ,
we get the threshold curve d = dK(G) with

dK(G) = BeK(G(1 + eσ0Kh) − eσ0K/4)

G(1 + eσ0Kh)2
, (2.12)

such that N2 < K if and only if d > dK . Thus, both E∗
1 and E∗

2 exist for d > dK and only E∗
1

exists for d � dK .
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Fig. 4. Existence of interior equilibria. An interior equilibrium E∗ = (N∗,P ∗) is an intersection of the g(N) curve with
a dashed vertical line (see the inserted graphs on the (N,P ) plane). It shows that there are two positive equilibria in
region I and none in II. In region III, there is only one interior equilibrium as the second intersection has the N -co-
ordinate either <0 or >K .

If G > Gc, then Nm > K . In this case, E∗
2 does not exist, and E∗

1 exists if and only if
d < dK(G).

We can show that the curve dK(G) has the following properties: (i) it is monotonically in-
creasing; (ii) 0 < dK(G) < d̄(G) for G ∈ (1/4h,1/2h); and (iii) it intersects d̄(G) at Gc. We
remark that the condition c2 = 0 yields another curve,

d = d(G) = B(hG − 1/4)

h2G
,

such that the nature of solutions of (2.6) may be different when (G,d) crosses the curve. How-
ever, it does not affect the number of interior equilibrium points (or their stability). From these
properties, we can sketch the curve dK(G) as shown in Fig. 4. This figure also illustrates that
the threshold curves, d̄(G) and dK(G), divide the region Ω into three sub-regions: I , II and III.
The number of interior equilibrium points in each of these regions are also shown in Fig. 4 and
summarized in Table 2.

2.2. Local stability of equilibria and Hopf bifurcation

We now examine the stability of the equilibria identified above. The variational matrix about
any equilibrium Ē = (N̄, P̄ ) of system (1.1) is

J (Ē) =
(

C′(N̄)(g(N̄) − P̄ ) + C(N̄)g′(N̄) −C(N̄)

BC′(N̄)P̄ BC(N̄) − d

)
. (2.13)
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Table 2
Linear analysis of equilibrium points

Equilibrium I II III

E0 saddle saddle saddle

E∗
1 repeller if g′(N∗

1 ) > 0 does not exist repeller if g′(N∗
1 ) > 0

attractor if g′(N∗
1 ) < 0 attractor if g′(N∗

1 ) < 0

E∗
2 does not exist does not exist saddle

EK saddle attracting node attracting node

It is easy to show that E0 is always a saddle point. The Jacobian at EK = (K,0) is

J (EK) =
(

C(K)g′(K) −C(K)

0 BC(K) − d

)
. (2.14)

From C(K)g′(K) < 0 (see Fig. 2) we know that a transcritical bifurcation occurs along the curve
dK(G) = BC(K). EK is an attracting node if d > dK , and it is a saddle if d < dK .

The Jacobian at E∗
1 is

J
(
E∗

1

) =
(

C(N∗
1 )g′(N∗

1 ) −C(N∗
1 )

BC′(N∗
1 )P ∗

1 0

)
. (2.15)

Clearly, detJ (E∗
1 ) > 0 as C(N∗

1 ) > 0 and C′(N∗
1 ) > 0. Notice that

trJ
(
E∗

1

) = C
(
N∗

1

)
g′(N∗

1

)
.

Hence, E∗
1 is an attractor if g′(N∗

1 ) < 0 and it is a repeller if g′(N∗
1 ) > 0.

The stability switch of E∗
1 suggests the possibility of a Hopf bifurcation. Since N∗

1 is a func-
tion of G and d , we can determine a Hopf curve d = dhopf(G) by solving the equations

BC
(
N∗

1

) − d = 0, g′(N∗
1

) = 0. (2.16)

Note that

g′(N) = − r

eσ0K

(1 + heσ0N)G(a2N
2 + a1N + a0)

(G + eσ0N(hG − 1/4))2
, (2.17)

where

a0 = G − heσ0KG − eσ0K/4,

a1 = −eσ0h(heσ0KG − eσ0K/4 − 3G),

a2 = 2(eσ0)
2h(hG − 1/4). (2.18)

It can be verified that the discriminant of g′(N) = 0,

Δg = h(G + heσ0KG − eσ0K/4)
(
2 + hG + eσ0h

2KG − eσ0hK/4
)
, (2.19)
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is positive. Notice that N∗
1 is the larger critical point of g(N) (the smaller one is negative), which

is given by

N∗
1 = −a1 + √

Δg

2a2
. (2.20)

From Eq. (2.6) we also have

N∗
1 = G(B − 2dh) − √

Δv

2eσ0(B/4 + dh2G − BhG)
, (2.21)

where Δv = BG(BG − d) > 0. Setting the two expressions in (2.20) and (2.21) equal we obtain
the curve

d = dhopf(G)

= B

2hG(1 + eσ0hK)2

[(
G + eσ0hGK − eσ0K

4

)

×
(

5eσ0hK

4
− 1 + hG + h2eσ0GK

)
−

(
eσ0hGK + G − 3eσ0K

4

)√
Δg

]
. (2.22)

It is easy to check that the curves dhopf(G) and d̄(G) intersect at G = Ĝ, where

Ĝ = eσ0K

2(2 + heσ0K)
<

eσ0K

2(1 + heσ0K)
= Gc. (2.23)

In order to have Ĝ > 1
4h

we also need to require K > 2
eσ0h

. The graph of dhopf(G) is shown in
Fig. 5.

To confirm that a Hopf bifurcation indeed occurs along the curve dhopf(G), it suffices to check
the sign of the Liapunov coefficient, θ , which for the system (1.1) is given by

θ(N) = −C(N)g′′(N)C′′(N)

C′(N)
+ C(N)g′′′(N) + 2C′(N)g′′(N) (2.24)

(see [14,15]). Using (2.20) and (2.21) (with N replaced by N∗
1 ) we can rewrite (2.24) as

θ
(
N∗

1

) = g′′(N∗
1 )

C′(N∗
1 )

(
2C′2(N∗

1

) − C
(
N∗

1

)
C′′(N∗

1

)) + C
(
N∗

1

)
g′′′(N∗

1

)
.

After checking that C(N∗
1 ) > 0, C′(N∗

1 ) > 0, C′′(N∗
1 ) < 0, g′′(N∗

1 ) < 0 and g′′′(N∗
1 ) < 0, we

have that θ(N∗
1 ) < 0. It follows that a Hopf bifurcation occurs along the curve dhopf(G) and it is

supercritical. Thus, we have proved the following theorem.

Theorem 1. A supercritical Hopf bifurcation occurs along the curve d = dhopf(G) for Ĝ < G <

1/2h.
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Fig. 5. The top panel is a bifurcation diagram for the case where σ(N) is constant. (a)–(f) are phase portraits in each
region. A circle represents an unstable equilibrium and a solid dot represents a stable equilibrium.

For the stability of E∗
2 , noticing that N∗

2 > Nm and hence C′(N∗
2 ) < 0, we know that

detJ
(
E∗

2

) = BC′(N∗
2

)
C

(
N∗

2

)
P ∗

2 < 0.

Therefore, E∗
2 is a saddle point whenever it exists.
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The stability results obtained above are summarized in Table 2 and illustrated in Fig. 5, which
is a bifurcation diagram. Figure 5 includes also additional bifurcations that will be discussed in
the next section.

2.3. The cusp point of codimension 2

Notice that the saddle node bifurcation curve, d = d̄(G), and the Hopf bifurcation curve,
d = dhopf(G), intersects at G = Ĝ. This suggests that the point

Op = (Ĝ, d̂), with d̂ = d̄(Ĝ) = dhopf(Ĝ), (2.25)

is an organizing center at which a codimension two bifurcation may occur. Recall that for
1/4h < Ĝ < 1/2h we require that K > 2

eσ0h
, which will be assumed throughout this section.

Since E∗
1 = E∗

2 at Op , to simplify the notation we denote N∗
1 = N∗

2 by N∗ and P ∗ = g(N∗).
Then, g′(N∗) = 0.

Theorem 2. For (G,d) = (Ĝ, d̂) the system (1.1) has a cusp point of codimension 2 (a Takens–
Bogdanov bifurcation) at E∗ = (N∗,P ∗).

To prove Theorem 2, we first prove the following lemma.

Lemma 1. For all N > 0, if g′(N) = 0 then g′′(N) �= 0.

Proof. It is easy to check that for all N

g′′(N) = − r

eσ0K

2Geσ0(b3N
3 + b2N

2 + b1N + b0)

(G + eσ0N(hG − 1/4))3
, (2.26)

with

b3 = h2(eσ0)
3(hG − 1/4)2,

b2 = 3h2(eσ0)
2G(hG − 1/4),

b1 = 3eσ0h
2G2,

b0 = G/4 − eσ0K/16 + hG2.

Solving g′(N) = 0 with N > 0 we have that

N = −a1/eσ0 + √
Δg

2a2/eσ0
> 0, (2.27)

where Δg is given by expression (2.19). Substituting the expression (2.27) for N in (2.26) we
find that g′′(N) �= 0. Therefore, the lemma is proved. �

We now prove Theorem 2.
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Proof of Theorem 2. Let C̄(N) and ḡ(N) denote, respectively, C(N) and g(N) with G replaced
by Ĝ, i.e.,

C̄(N) = eσ0N

1 + heσ0N

(
1 − eσ0N

4Ĝ(1 + heσ0N)

)
,

ḡ(N) = r

eσ0K

(K − N)(1 + heσ0N)2

1 + (h − eσ0/4Ĝ)N
. (2.28)

Notice that

N∗ = 2Ĝ

e(1 − 2hĜ)
, P ∗ = ḡ(N∗), (2.29)

and that

C̄′(N∗) = 0, ḡ′(N∗) = 0.

Thus, the Jacobian (2.13) at E∗ = (N∗,P ∗) has double zero eigenvalues.
Consider the transformation

x1 = N − N∗, x2 = P − P ∗. (2.30)

Then at Op system (1.1) becomes

dx1

dt
= C̄(N∗)x2 + 1

2
C̄(N∗)ḡ′′(N∗)x2

1 + R10(x1, x2),

dx2

dt
= 1

2
BC̄′′(N∗)P ∗x2

1 + R20(x1, x2), (2.31)

where Ri0(x1, x2) (i = 1,2) is C∞ and Ri0(x1, x2) = O(|(x1, x2)|3). From another transforma-
tion,

y1 = x1, y2 = C̄(N∗)x2, (2.32)

system (2.31) becomes

dy1

dt
= y2 + 1

2
C̄(N∗)ḡ′′(N∗)y2

1 + R11(y1, y2),

dy2

dt
= 1

2
BC̄(N∗)C̄′′(N∗)P ∗y2

1 + R21(y1, y2),

where Ri1(y1, y2) (i = 1,2) is C∞ and Ri1(y1, y2) = O(|(y1, y2)|3). Finally, using the near-
identity transformation,

u = y1, v = y2 + 1

2
C̄(N∗)ḡ′′(N∗)y2

1 + R11(y1, y2), (2.33)
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we obtain

du

dt
= v,

dv

dt
= δ1u

2 + δ2uv + R22(u, v),

where R22(u, v) = O(|(u, v)|3) is C∞ and

δ1 = 1

2
BC̄(N∗)C̄′′(N∗)P ∗ < 0, δ2 = C̄(N∗)ḡ′′(N∗) < 0,

from Lemma 1. By applying Theorem 8.4 in [7], we complete the proof of Theorem 2. �
The next result shows that the original system (1.1) is a generic unfolding of the singularity at

Op = (Ĝ, d̂).

Theorem 3. For (G,d) sufficiently close to (Ĝ, d̂) the system (1.1) is a generic unfolding of the
cusp singularity of codimension 2 at (Ĝ, d̂).

Proof. Let

G = Ĝ + ε1, d = d̂ + ε2, (2.34)

where ε1 and ε2 are small numbers. Then (1.1) can be written as

dN

dt
= C(N, ε1)

(
g(N, ε1) − P

)
,

dP

dt
= BC(N, ε1)P − (d + ε2)P, (2.35)

with

C(N, ε1) = eσ0N

1 + heσ0N

(
1 − eσ0N

4(Ĝ + ε1)(1 + heσ0N)

)
,

g(N, ε1) = r

eσ0K

(K − N)(1 + heσ0N)2

1 + (
h − eσ0

4(Ĝ+ε1)

)
N

. (2.36)

From Theorem 2 we know that system (2.35) has a cusp point at E∗ if ε = 0. By using the
transformation (2.30), system (2.35) becomes

dx1

dt
= C(N∗,0)x2 + a00(ε) + a10(ε)x1 + a01(ε)x2 + 1

2
a20(ε)x

2
1

+ a11(ε)x1x2 + P10(x1, x2, ε),

dx2

dt
= b00(ε) + b10(ε)x1 + b01(ε)x2 + 1

2
b20(ε)x

2
1 + b11(ε)x1x2

+ P20(x1, x2, ε), (2.37)
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where Pi0(x1, x2, ε) (i = 1,2) is C∞ and Pi0(x1, x2, ε) = O(|(x1, x2)|3), and

a00 = C(N∗, ε1)
(
g(N∗, ε1) − P ∗),

a10 = C(N∗, ε1)g
′(N∗, ε1),

a01 = ε1
∂C(N∗, ε1)

∂ε1

∣∣∣∣
ε1=0

+ O
(
ε2),

a20 = C′′(N∗, ε1)
(
g(N∗, ε1) − P ∗) + 2C′(N∗, ε1)g

′(N∗, ε1) + C(N∗, ε1)g
′′(N∗, ε1),

a11 = −C′(N∗, ε1),

b00 = (
BC(N∗, ε1) − (d + ε2)

)
P ∗,

b10 = BC′(N∗, ε1)P
∗,

b01 = BC(N∗, ε1) − (d + ε2),

b20 = BC′′(N∗, ε1)P
∗,

b11 = BC′(N∗, ε1).

Here ‘′’ and ‘′′’ denote the derivatives of the functions g and C with respect to N .
From the transformation (2.32), the above system becomes

dy1

dt
= y2 + a00(ε) + a10(ε)y1 + a01(ε)

C(N∗,0)
y2 + 1

2
a20(ε)y

2
1 + a11(ε)

C(N∗,0)
y1y2

+ P11(y1, y2, ε),

dy2

dt
= b00(ε)C(N∗,0) + b10(ε)C(N∗,0)y1 + b01(ε)y2 + 1

2
b20(ε)C(N∗,0)y2

1

+ b11(ε)y1y2 + P21(y1, y2, ε), (2.38)

where Pi1(y1, y2, ε) (i = 1,2) is C∞ and Pi1(y1, y2, ε) = O(|(y1, y2)|3).
Using the transformation (2.33) (i.e., u1 = y1 and u2 equals the right-hand side of the first

equation in system (2.38)), we have

du1

dt
= u2,

du2

dt
= g00(ε) + g10(ε)u1 + g01(ε)u2 + 1

2
g20(ε)u

2
1 + g11(ε)u1u2 + 1

2
g02(ε)u

2
2

+ P22(u1, u2, ε), (2.39)

where P22(y1, y2, ε) = O(|(y1, y2)|3), and

g00(ε) = b00(ε)C(N∗,0) + · · · ,
g10(ε) = b10(ε)C(N∗,0) + a11(ε)b00(ε) − b11(ε)a00(ε) + · · · ,
g01(ε) = b01(ε) + a10(ε) − a11(ε)a00(ε)

C(N∗,0)
+ · · · ,
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g20(0) = b20(0),

g11(0) = a20(0),

g02(0) = 0.

Since akl(ε) and bkl(ε) vanish at ε = 0 for all k + l � 1, the terms shown above are sufficient for
computing the first partial derivatives with respect to ε at ε = 0.

Let

v1 = u1 − δ(ε), v2 = u2,

then the above system becomes

dv1

dt
= v2,

dv2

dt
= g00(ε) + g10(ε)δ(ε) + (

g10(ε) + g20(ε)δ(ε) + O
(
δ2))v1

+ (
g01(ε) + g11(ε)δ(ε) + O

(
δ2))v2 + 1

2

(
g20(ε) + O(δ)

)
v2

1

+ (
g11(ε) + O(δ)

)
v1v2 + P32(v1, v2, ε), (2.40)

where P32(v1, v2, ε) = O(|(v1, v2)|3). Since

g20(0) = b20(0) = BC̄′′(N∗)P ∗ < 0,

there exists a smooth function

δ(ε) ≈ −g10(ε)

g20(0)
,

annihilating the term proportional to v1 in the equation for v2, which leads to the following
system:

dv1

dt
= v2,

dv2

dt
= h00(ε) + h01(ε)v2 + 1

2
h20(ε)v

2
1 + h11(ε)v1v2 + P42(v1, v2, ε), (2.41)

where P42(v1, v2, ε) = O(|(v1, v2)|3) is C∞. Notice that

h00(ε) = g00(ε) + · · · , h01(ε) = g01(ε) − g10(ε)

g20(0)
g11(ε) + · · · ,

and

h20(0) = g20(0) < 0, h11(0) = g11(0) < 0.
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Introduce the scaled time,

s =
∣∣∣∣ h11(ε)

1
2h20(ε)

∣∣∣∣t,

and scaled variables,

z1 = h11(ε)

( 1
2h20(ε))2

v1, z2 = h2
11(ε)

( 1
2h20(ε))3

v2.

Notice that the denominators are nonzero at ε = 0. System (2.41) then takes the following form:

dz1

ds
= z2,

dz2

ds
= μ1(ε) + μ2(ε)z2 + z2

1 + z1z2 + P52(z1, z2, ε), (2.42)

where P52(z1, z2, ε) = O(|(z1, z2)|3) is C∞, and

μ1(ε) = ( 1
2h20(ε))

4

h3
11(ε)

h00(ε) = ( 1
2b20(0))4

(a20(0))3
(Bε1 − ε2)GP ∗ + O

(|ε|2),

μ2(ε) = ( 1
2h20(ε))

2

h2
11(ε)

h01(ε)

= ( 1
2b20(0))2

(a20(0))2

[(
B − GK2eα

2
− (−2α + hG)2Ge

α

)
ε1 − ε2

]
+ O

(|ε|2). (2.43)

After checking that

D(μ1,μ2)

D(ε1, ε2)

∣∣∣∣
(ε1=0, ε2=0)

> 0,

we know that system (2.35) (with parameters ε1 and ε2) is a generic family unfolding at the
codimension 2 cusp singularity. This completes the proof. �

For system (2.42), the saddle-node bifurcation is given by (2.42)

SN: μ1(ε) = 0,

or in (ε1, ε2) is

ε2 = Bε1 + O
(
ε2

1

)
. (2.44)

We remark that (2.44) is consistent with the saddle-node bifurcation computed directly from the
original system which, by using (2.34) and (2.35), is given by

ε2 = Bε1.
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The Hopf bifurcation curve for system (2.42) is

μ2 = √−μ1, for μ1 < 0,

which in (ε1, ε2) is

ε2 = Bε1 − 2(2 + eσ0hK)5B

(4 + eσ0hK)2h2(eσ0)3K3
ε2

1 + O
(|ε|3).

This can also be shown to be consistent with the Hopf curve given in (2.22).
From dynamical systems theory we know that bifurcations of (2.35) near (μ1,μ2) = (0,0)

are also present in the original system (1.1) near (G,d) = (Ĝ, d̂). From the properties of the
Takens–Bogdanov bifurcation we know that, besides the saddle node and Hopf bifurcations,
system (2.35) has a homoclinic bifurcation near (μ1,μ2) = (0,0). The existence of a homoclinic
bifurcation is given in the following result.

Theorem 4. For (G,d) sufficiently close to (Ĝ, d̂), the system (1.1) has a homoclinic bifurcation
along the curve d = dhom(G), which is defined by

dhom(G) = d̂ + 5

7

(
Bε1 − 2(2 + eσ0hK)5B

(4 + eσ0hK)2h2(eσ0)3K3
ε2

1

)
+ O

(
ε3

1

)
(2.45)

with ε1 = G − Ĝ.

Proof. For system (2.42), using results in [11] for the Takens–Bogdanov bifurcation, we know
that there is a homoclinic curve given by

μ2 = 5

7

√−μ1, for μ1 < 0, |μ1| 	 1.

The corresponding curve in (G,d) is the one given in (2.45), which is located below the Hopf
curve. The proof is finished. �

Figure 5 illustrates the location of the homoclinic curve dhom(G) in the (G,d) plane. We
remark that from the above result we only have the homoclinic curve dhom(G) near the cusp
point Op (e.g., the solid portion shown in Fig. 5). In the next subsection we discuss the possible
extension of this curve.

2.4. Global dynamics and bifurcation diagram for system (1.1)

All bifurcations identified in the previous subsection are local results. We now use these results
to obtain information about global dynamics and bifurcations.

First, as shown in Fig. 5, the bifurcation curves d̄(G), dk(G), and dhopf(G) divide the region
Ω into following sub-regions: I (which is I1 ∪ I2), II, III1 (which is III1a ∪ III1b), and III2. From
the result of Hopf bifurcation we know that for (G,d) ∈ I1 and near the curve dhopf(G), a stable
periodic solution exists. The following result shows that the existence of periodic solutions can
be extended to the whole region I1.
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Theorem 5. System (1.1) has at least one stable limit cycle for any (G,d) ∈ I1.

Proof. First, define the positive region D = {(N,P ) | 0 < N < K, 0 < P < P̄ }, where P̄ is
some positive number. It is easy to verify that the region D is invariant for system (1.1) for an
appropriate P̄ . For any (d,G) ∈ I1, system (1.1) has two boundary equilibria E0 = (0,0) and
EK = (K,0), both of which are saddle, and an interior equilibrium E∗

1 which is a repeller. By
the Poincaré–Bendixson theorem, there exists at least one stable limit cycle. �

Numerical simulations suggest that the stable limit cycle is unique. It is beyond the scope of
this paper to prove analytically the uniqueness of the limit cycle.

For the homoclinic curve dhom(G), the solid part is given in (2.45) which is defined for (G,d)

close to Op = (Ĝ, d̂). We know that for (G,d) below (or to the left of) the curve (the solid part)
there is no periodic solution, and that for (G,d) above (or to the right of) the solid curve there
is one stable periodic solution. Our intensive numerical simulations indicate that this curve can
be extended as shown by the dashed curve in Fig. 5, which divides the region III1 into III1a
and III1b, such that there is no periodic solution in III1a and there is one stable periodic solution
in III1b. From the above analysis we obtain Fig. 5, which describes a global bifurcation diagram
and depicts the phase portraits in each of the regions.

2.5. Numerical simulations

The numerical simulations of the system (1.1) for the case of constant σ(N) not only confirm
our analytic results, but also help extend the local results to get a global bifurcation diagram.
In the simulations presented in this section, all parameter values are fixed and only G and d

are varied so that (G,d) is chosen from different subregions in the bifurcation diagram (5). The
parameter values are: r = 0.01, K = 1 700 000, h = 1/200, eσ0 = 0.0003, and B = 0.00003. For
this set of parameter values, we have Ĝ ≈ 56.

In Fig. 6, we fix the value of G = 60, which is slightly greater than Ĝ, and choose six different
d values corresponding to six points on a vertical line (in the (G,d) plane) which starts in region
III2 and passes through regions III1b and III1a. This line also intersects both the solid and dashed
parts of the homoclinic curve dhom(G). In all cases (a)–(f), we observe that there are two interior
equilibria with E∗

2 (the one with a larger N component) being a saddle and that the boundary
equilibrium EK = (K,0) is locally asymptotically stable. Figure 6(a) is for (G,d) ∈ III2 and it
shows that E∗

1 is a stable focus. Figure 6(b) shows that when d is decreased so that (G,d) is
in region III2 (and above the solid part of dhom(G)), E∗

1 becomes unstable and a stable periodic
solution appears via Hopf bifurcation. When d decreases further and (G,d) reaches the solid
part of dhom(G), the periodic solution disappears and there is a homoclinic orbit as shown in
Fig. 6(c). Figure 6(d) is for (G,d) in region III1a, in which both E∗

1 and E∗
2 are unstable and

there is no limit cycle. The boundary equilibrium EK is the only attractor. As d continues to
decrease, (G,d) reaches dhom(G) again (the dashed part) and it shows in Fig. 6(e) that there is
a homoclinic orbit. Figure 6(f) shows that a stable periodic solution appears again after (G,d)

passes dhom(G) and enters the region III1b.
In Fig. 7 we fix G = 90, which is close to G = 1/2h = 100. Two values of d are chosen so

that (G,d) is slightly above the curve dhopf(G) for one d value and slightly below for the other d

value (i.e., (G,d) is in the region I2 and I1, respectively). We observe that in both cases there is
only one interior equilibrium E∗

1 and that the boundary equilibrium EK is unstable. Figure 7(a)
is for (G,d) ∈ I2 and it shows that E∗

1 is stable. Figure 7(b) is for (G,d) ∈ I1 and it shows that
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Fig. 6. Simulation results for system (1.1). G = 60 is fixed which is slightly greater than Ĝ. The value of d decreases
so that (G,d) moves along a vertical line passing through regions III2, III1b, III1a, as well as the homoclinic curve
dhom(G). These phase portraits confirm our bifurcation analysis (see the text for more discussions).
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Fig. 7. Simulation results for system (1.1) when G = 90, which is close to G = 1/2h = 100. Two values of d are chosen
so that (a) (G,d) is slightly above the curve dhopf(G) in region I2, and (b) (G,d) is slightly below the curve dhopf(G) in
region I1. Other parameters have the same values as in Fig. 6. It illustrates that, as d decreases and passes through dhopf,
the interior equilibrium E∗

1 changes from being stable (see (a)) via a Hopf bifurcation and a stable periodic solution exists
(see (b)).

E∗
1 is unstable and a stable periodic solution appears via Hopf bifurcation. Other parameters have

the same values as in Fig. 6.

3. Analysis of model (1.1) for the case of non-constant σ(N)

In this section, we consider the case in which the herbivore can control its rate of consumption
of plant items. It is assumed that the herbivore can decide whether or not to consume an encoun-
tered food item, and especially to limit ingestion when the plant density N is high. For example,
the herbivore can adjust σ(N) so that σ(N) ∝ Nm/N when N > Nm, where Nm = 2G

eσ0(1−2hG)

is the plant density at which C(N) has its maximum G. A more detailed discussion on this
assumption is given in [4]. Following [4], we consider the following form for σ(N):

σ(N) =
{

σ0, for N � Nm,

σ0
Nm

N
, for Nm < N � K,

(3.1)

where σ0 is a constant. Let C1(N) be the corresponding function for the non-constant σ(N)

given in (3.1), i.e.,

C1(N) =
{

C(N,σ0), for N � Nm,

G, for N > Nm,
(3.2)

where C(N,σ0) is given in (1.2) with σ = σ0. Rewrite system (1.1) as

dN

dt
= rN

(
1 − N

K

)
− C1(N)P,

dP

dt
= BC1(N)P − dP. (3.3)
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Clearly, C1(N) is continuously differentiable, and hence, the existence and uniqueness of solu-
tions are guaranteed.

The dynamics of the system (3.3) are very different from that of (1.1). System (3.3) still has
two boundary equilibria, E0 = (0,0) and EK = (K,0). It is easy to show that E0 is always
a saddle. The stability of EK is determined by the sign of BC1(K) − d , which determines a
bifurcation curve d̃K(G):

d̃K(G) =
{

B(G − C1(K)), for G > Gc (in this case K < Nm),

BG, for G < Gc (in this case K > Nm),
(3.4)

where Gc is given in (2.10). For G > Gc , EK is l.a.s. if d > d̃K , and unstable if d < d̃K . For
G < Gc, EK is always unstable.

Since the function C1(N) is monotone, there is at most one feasible interior equilibrium,
which we denote by E∗ = (N∗,P ∗), with 0 < N∗ < K and P ∗ > 0. Let g1(N) = rN(1 −
N/K)/C1(N), then the first equation in (3.3) can be written as

dN

dt
= C1(N)

(
g1(N) − P

)
.

The graph of g1(N) has properties similar to that of g(N) (see Fig. 2). Clearly, N∗ and P ∗ at the
interior equilibrium E∗ are solutions of the equations

BC1(N) = d and P = g1(N), (3.5)

with 0 < N∗ < K . Also, since C1(N) ≡ G for all N � Nm, we also have that N∗ < Nm.
Noticing that C1(N) = C(N) for all N � Nm, we know that N∗ (which must be smaller

than Nm) is given by the same expression as N∗
1 in the case of constant σ(N). Thus, similarly

to the case of constant σ(N), we can show that the existence condition of E∗ is related to the
stability of EK , which is determined by the bifurcation curve d̃K(G). That is, N∗ exists if d <

d̃K(G) and it does not exist if d � d̃K(G).
From N∗ < Nm and C1(N) = C(N), g1(N) = g(N) for all N � Nm, we know that the Ja-

cobian at E∗ is the same as the Jacobian at E∗
1 . It follows that the stability of E∗ is determined

by the sign of g′(N∗). That is, E∗ is stable if g′(N∗) < 0 and unstable if g′(N∗) > 0. Hence,
the stability of E∗ is the same as the stability of E∗

1 for (1.1), and hence, a supercritical Hopf
bifurcation occurs along the curve dhopf(G) given in (2.22).

The curves d̄(G), d̃K(G), and dhopf(G) divide Ω into four sub-regions: I1, I2, II, and III
as shown in Fig. 8, which is very different from Fig. 5 for the case when σ(N) is constant.
In particular, region III in Fig. 8 is much simpler than the region III (= III1a ∪ III1b ∪ IIIb) in
Fig. 5. The reason for this is that homoclinic bifurcation is not possible because of the absence
of a saddle-node bifurcation for (3.3). Moreover, since the curves d̃K(G) and d̄(G) are the same
for G < Gc, regions III1b and IIIb are not present. Region III is determined by the vertical line
G = Ĝ.

Stability results in regions I2 and II follow from the local stability analysis for EK and E∗ as
mentioned above. For the region I1, using the similar argument as for the case of constant σ(N)

we know that the existence of a stable limit cycle near the Hopf curve dhopf(G) can be extended
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Fig. 8. The top panel is a bifurcation diagram for the case where σ(N) is not constant and has the form given in (3.1).
The bottom panel are phase portraits for (G,d) in various regions.

to the whole region. However, the behaviors of system (3.3) in region III is very different from
that of (1.1). In fact, the following result holds.

Theorem 6. System (3.3) has a stable periodic solution for all (G,d) ∈ III in Fig. 8.

Proof. Notice that the region D = {(N,P ) | 0 � N < A, 0 � P < A}, where A > K is a large
positive number, is positively invariant. For (G,d) ∈ III the system (3.3) has two boundary
equilibria, E0 = (0,0) and EK = (K,0), both of which are saddle points, and an interior equilib-
rium, E∗, which is a repeller. Notice also that the N -axis is an invariant manifold of E0 and EK .
Therefore, there is no graphic in the region D. From the Poincaré–Bendixson theorem, there
must exist a stable periodic orbit in D for all (G,d) ∈ III. �
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Fig. 9. Simulation results for system (3.3). All parameter values except G and d are the same as in Fig. 6. G is chosen
to be 90 which is near G = 1/2h = 100. d varies so that (G,d) is in various regions. (a) shows that in region I1, E∗

1
(marked by a circle) and EK are unstable, and there is a periodic solution. (b) and (c) show that in region I2, E∗

1 is a
stable focus for larger d and a stable node for smaller d , and the periodic solution disappears due to the Hopf bifurcation.
(d) shows that in region II there is no interior equilibrium and EK is a global attractor.

As is in the case of constant σ(N) we know that for all (G,d) ∈ I1 there is a stable periodic
solution. Also, in region II there is no interior equilibrium and the boundary equilibrium EK is
stable. Figure 8 describes the global bifurcation diagram and phase portraits of system (3.3).

Numerical simulations have also been carried out for system (3.3), some of which are illus-
trated in Figs. 9 and 10. These figures are produced by varying the values of G and d with all
other parameters having the same values as in Figs. 6 and 7.

In Fig. 9, we fix the value of G at G = 90 (which is near 1/2h = 100) and vary d such
that (G,d) belongs to either region I1, or I2, or II. We observe that a stable periodic solution
exists in region I1 while E∗

1 and EK are both unstable (see (a)). In (b) it shows that when d is
increased and (G,d) just passes dhopf(G) and enters region I2, the periodic solution disappears
and E∗

1 becomes a stable focus. As d continues to increase and (G,d) approaches the curve
dK(G), E∗

1 becomes a stable node (see (c)). Finally, when (G,d) enters the region II, the interior
equilibrium E∗

1 disappears and EK is a global attractor.
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Fig. 10. G is chosen to be 54, which is to the left of Ĝ ≈ 56. d varies so that (G,d) is in various part of region III. (a)–(c)
show that for all d ∈ (0, d̄), as long as (G,d) ∈ III, E∗

1 (marked by a circle) and EK are unstable and the system (3.3)

has a stable periodic solution. (d) shows that for d > d̄ there is no periodic solution and EK is a global attractor.

Figure 10 illustrates the dynamics when G = 54 which is to the left of Ĝ. (a)–(c) show that
for (G,d) ∈ III there is always a stable limit cycle. (d) shows that when (G,d) is above the line
d̄(G) = BG, there is neither limit cycle nor interior equilibrium, while EK is a global attractor.

These simulation results are clearly consistent with the results obtained from the bifurcation
analysis.

4. Conclusion

In this paper, we study the dynamics of the system (1.1), which models plant–herbivore inter-
actions with a functional response mediated by plant toxicity. This toxin-determined functional
response model (1.1) (referred to as TDFRM) is a modification of the traditional consumer-
resource model with Holling Type II functional response, and the modification is biologically
well-justified (see [4,8]).

We show that the TDFRM is capable of producing much more complex dynamics than the
Holling Type II functional response model. For instance, the TDFRM may have multiple attrac-
tors for parameter values in certain regions (e.g., a stable interior equilibrium and a stable limit
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cycle in region III1b, or two stable equilibria in region III2), and both Hopf and homoclinic bi-
furcations are possible. The complex dynamics have important biological implications for the
plant–herbivore interaction under the influence of plant toxicity (see [4] for a more detailed dis-
cussion).

To explore the impact of plant toxicity and toxin-determined herbivore browsing on the plant–
herbivore dynamics, we conducted bifurcation analysis using G (which provides a measure of
toxicity) and d (which affects the fitness of herbivores) as bifurcation parameters. We derived
bifurcation curves which divide the parameter region Ω into several subregions. Existence and
stability of equilibria and limit cycles in these subregions are presented. The existence of a ho-
moclinic bifurcation is determined by identifying a cusp point of codimension 2 and applying
the results for the Takens–Bogdanov bifurcation.

For the analysis of the TDFRM, we considered two cases in terms of the consumption choice
coefficient σ(N). In the first case, σ(N) = σ0 is a constant for which the functional response
function C(N) is unimodal. In the second case, σ(N) is a non-constant function given in (3.1)
for which C(N) is monotone. Both cases are biologically relevant, and which one is more ap-
propriate will depend on whether the herbivore can have some control of its rate of consumption
of plant items when that is likely to lead to lethal toxicant intake. Our results show that the dy-
namics of the TDFRM in the two cases are very different. In both cases, the model behaviors
suggest that an effect of the toxicant is to increase the likelihood of the well-known ‘paradox of
enrichment’ type limit cycle oscillations ([12]; see also [4] for a more detailed discussion).

The system considered in this article is a two-dimensional TDFRM. We have also studied
a three-dimensional TDFRM which includes two plant species and one herbivore population
(see [8]). The analytical results obtained in [8] are very limited. A more detailed bifurcation
analysis of the 3-D system (similar to what has been done for the 2-D model in this paper) will
be both mathematical challenging and biologically interesting.
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