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Abstract. Optimal control theory is applied to a system of ordinary differ-
ential equations modeling a two-strain tuberculosis model. Seeking to reduce
the latent and infectious groups with the resistant-strain tuberculosis, we use
controls representing two types of treatments. The optimal controls are char-
acterized in terms of the optimality system, which is solved numerically for
several scenarios.

1. Introduction. In the absence of an effective vaccine, current control programs
for TB have focused on chemotherapy. The antibiotic treatment for an active TB
(with drug-sensitive strain) patient requires a much longer period of time and a
higher cost than that for those who are infected with sensitive TB but have not
developed the disease. Lack of compliance with drug treatments not only may lead
to a relapse but to the development of antibiotic resistant TB – one of the most
serious public health problems facing society today. A report released by the World
Health Organization warns that if countries do not act quickly to strengthen their
control of TB, the multidrug resistant strains that have cost New York City and
Russia hundreds of lives and more than $1 billion each will continue to emerge in
other parts of the world [16]. The reduction in cases of drug sensitive TB can be
achieved either by “case holding”, which refers to activities and techniques used to
ensure regularity of drug intake for a duration adequate to achieve a cure [7], or by
“case finding”, which refers to the identification (through screening, for example) of
individuals latently infected with sensitive TB who are at high risk of developing the
disease and who may benefit from preventive intervention [11]. These preventive
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treatments will reduce the incidence (new cases per unit of time) of drug sensitive
TB and hence indirectly reduce the incidence of drug resistant TB.

Costs for activities to facilitate case holding and case finding may vary depending
on many factors. For example, case holding can be very challenging because of the
fact that chemotherapy must be maintained for several months to ensure a lasting
cure, but patients usually recover their sense of well-being after only a few weeks of
treatment and may often stop taking medications [11]. It has been reported by the
Centers for Disease Control [6] that, in the United States, about 22% of patients
currently fail to complete their treatment within a 12-month period and in some
areas the failure rate reaches 55% [6]. In the past few years, many places in the world
have adopted the DOTS (directly observed therapy strategy) in which public health
nurses, community outreach workers, and others carry most of the responsibility
for monitoring the patients during their course of treatment through home visits
and administration. Although this program requires a relatively shorter period
of time for the treatment, there was only about 24% of all TB patients who were
treated through DOTS in 1999 [17]. For case finding, we mainly consider actions for
the prevention of disease development with preventive therapy of latently infected
persons with sensitive TB. There are several case finding methods. “Active case
finding” refers to methods for the identification of TB cases where the first initiative
patient/provider contact is taken by health care providers, whereas “Passive case
finding” refers to methods for the identification of TB cases where the first initiative
patient/provider contact is taken by the patient. Another choice of case finding
may be targeted screening activities among population groups at high risk of TB
(immigrants from high prevalence countries, for example). Different methods have
been shown to yield various levels of rewards in resource-poor and resource-rich
countries (see [10] and [12]), and the amount of resources required is also different.

Some past models of tuberculosis, particularly the predictive models attempting
to calculate a threshold for the basic reproductive number R0, have incorporated
drug treatment and/or vaccination, and have discussed control of the disease by
looking at the role of disease transmission parameters in the reduction of R0 and
the prevalence of the disease (see [1]– [5]). However, these models did not account
for time dependent control strategies since their discussions are based on prevalence
of the disease at equilibria. Time dependent control strategies have been studied
for HIV models (see [8] and [9]). Both approaches of studying control strategies
produce valuable theoretical results which can be used to suggest or design epidemic
control programs. Depending on a chosen goal (or goals) various objective criteria
may be adopted.

In this article we consider (time dependent) optimal control strategies associated
with case holding and case finding based on a two-strain TB model developed in [4].
This model assumes that individuals in the latent stage develop active TB at a given
rate. It also assumes that a proportion of treated individuals with active TB does
not finish the treatment, of which a fraction will develop drug resistant TB. We
introduce into this model two control mechanisms representing case finding and case
holding efforts. The case finding effort is incorporated by adding a control term
that identifies and cures a fraction of latent individuals so that the rate at which
latent individuals develop the disease will be reduced. The case holding effort is
incorporated by adding a control term that may lower the treatment failure rate of
individuals with active sensitive TB so that the incidence of acquired drug-resistant
TB will be reduced. Our objective functional balances the effect of minimizing
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the cases of latent and infectious drug-resistant TB and minimizing the cost of
implementing the control treatments.

This paper is organized as follows: Section 2 describes a two-strain TB model
with two control terms. Our objective functional is also introduced in this section.
The analysis of optimal controls is given in Section 3. Section 4 includes some
numerical studies of optimal controls and discusses our results.

2. A Two-strain TB Model. Our state system is the following system of six
ordinary differential equations from [4]:

Ṡ = Λ − β1S
I1

N
− β∗S

I2

N
− µS

L̇1 = β1S
I1

N
− (µ + k1)L1 − u1(t)r1L1 + (1 − u2(t))pr2I1 + β2T

I1

N
− β∗L1

I2

N

İ1 = k1L1 − (µ + d1)I1 − r2I1

L̇2 = (1 − u2(t))qr2I1 − (µ + k2)L2 + β∗(S + L1 + T )
I2

N

İ2 = k2L2 − (µ + d2)I2

Ṫ = u1(t)r1L1 + (1 − (1 − u2(t))(p + q))r2I1 − β2T
I1

N
− β∗T

I2

N
− µT

(1)

with S(0), L1(0), I1(0), L2(0), I2(0), T (0) given, where the host population is divided
into the following epidemiological classes (state variables):
S: Susceptible
L1: Latent, infected with typical TB but not infectious
I1: Infectious with typical TB
L2: Latent, infected with resistant strain TB but not infectious
I2: Infectious with resistant strain TB
T : Treated (effectively),
N = S + L1 + I1 + L2 + I2 + T.

We assume that an individual may be infected only through contacts with in-
fectious individuals. Λ is the recruitment rate. β1 and β2 are the rates at which
susceptible and treated individuals become infected by an infectious individual with
typical TB, respectively. β∗ is the rate at which an uninfected individual becomes
infected by one resistant-TB infectious individual. The per-capita natural death
rate is µ while the per-capita disease induced death rates are d1 and d2 for the typ-
ical TB and resistant TB, respectively. The rates at which an individual leaves the
two latent classes by becoming infectious are k1 and k2. r1 and r2 are the treatment
rates of individuals with latent and infectious typical TB, respectively, and p + q
is the proportion of those treated infectious individuals who did not complete their
treatment (p + q ≤ 1).

The control functions, u1(t) and u2(t), are bounded, Lebesgue integrable func-
tions. The “case finding” control, u1(t), represents the fraction of typical TB latent
individuals that is identified and will be put under treatment (to reduce the num-
ber of individuals that may be infectious). The coefficient, 1 − u2(t), represents
the effort that prevents the failure of the treatment in the typical TB infectious
individuals (to reduce the number of individuals developing resistant TB). When
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the “case holding” control u2(t) is near 1, there is low treatment failure and high
implementation costs.

Our objective functional to be minimized is

J(u1, u2) =

tf∫

0

[L2(t) + I2(t) +
B1

2
u2

1(t) +
B2

2
u2

2(t)]dt (2)

where we want to minimize the latent and infectious groups with resistant-strain
TB while also keeping the cost of the treatments low. We assume that the costs
of the treatments are nonlinear and take quadratic form here. The coefficients, B1

and B2, are balancing cost factors due to size and importance of the three parts of
the objective functional. We seek to find an optimal control pair, u∗

1 and u∗
2, such

that
J(u∗

1, u
∗
2) = min

Ω
J(u1, u2) (3)

where Ω = {(u1, u2) ∈ L1(0, tf ) | ai ≤ ui ≤ bi, i = 1, 2} and ai, bi, i = 1, 2, are fixed
positive constants.

In our analysis, we assume Λ = µN, d1 = d2 = 0. Thus the total population N is
constant. We can also treat the nonconstant population case by these techniques,
but we choose to present the constant population case here.

3. Analysis of Optimal Controls. The necessary conditions that an optimal
pair must satisfy come from Pontryagin’s Maximum Principle [15]. This principle
converts (1) - (3) into a problem of minimizing pointwise a Hamiltonian, H, with
respect to u1 and u2:

H = L2 + I2 +
B1

2
u2

1 +
B2

2
u2

2 +
6∑

i=1

λigi (4)

where gi is the right hand side of the differential equation of the ith state variable.
By applying Pontryagin’s Maximum Principle [15] and the existence result for the
optimal control pairs from [13], we obtain

Theorem 3.1. There exists an optimal control pair u∗
1, u∗

2 and corresponding so-
lution, S∗, L∗

1, I∗1 , L∗
2, I∗2 , and T ∗, that minimizes J(u1, u2) over Ω. Furthermore,

there exists adjoint functions, λ1(t), . . . , λ6(t), such that

λ̇1 = λ1(β1
I∗1
N

+ β∗ I∗2
N

+ µ) + λ2(−β1
I∗1
N

) + λ4(−β∗ I∗2
N

)

λ̇2 = λ2(µ + k1 + u1(t)r1 + β∗ I∗2
N

) + λ3(−k1) + λ4(−β∗ I∗2
N

) + λ6(−u∗
1(t)r1)

λ̇3 = λ1(β1
S∗

N
) + λ2(−β1

S∗

N
− (1 − u∗

2(t))pr2 − β2
T ∗

N
) + λ3(µ + d1 + r2)

+ λ4(−(1 − u∗
2(t))qr2) + λ6(−(1 − (1 − u∗

2(t))(p + q))r2 + β2
T ∗

N
)

λ̇4 = −1 + λ4(µ + k2) + λ5(−k2)

λ̇5 = −1 + λ1(β∗S∗

N
) + λ2(β∗L∗

1

N
) + λ4(−β∗ S∗ + L∗

1 + T ∗

N
) + λ5(µ + d2) + λ6(β∗T ∗

N
)

λ̇6 = λ2(−β2
I∗1
N

) + λ4(−β∗ I∗2
N

) + λ6(β2
I∗1
N

+ β∗ I∗2
N

+ µ) (5)
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with transversality conditions

λi(tf ) = 0, i = 1, . . . , 6 (6)

and N = S∗ + L∗
1 + I∗1 + L∗

2 + I∗2 + T ∗.

The following characterization holds

u∗
1(t) = min(max(a1,

1
B1

(λ2 − λ6)r1L
∗
1), b1)

and

u∗
2(t) = min(max(a2,

1
B2

(λ2p + λ4q − λ6(p + q)r2I
∗
1 )), b2).

(7)

Proof. Corollary 4.1 of [13] gives the existence of an optimal control pair due to
the convexity of integrand of J with respect to (u1, u2), a priori boundedness of
the state solutions, and the Lipschitz property of the state system with respect to
the state variables. Applying Pontryagin’s Maximum Principle, we obtain

dλ1

dt
= −∂H

∂S
, λ1(tf ) = 0,

. . .

dλ6

dt
= −∂H

∂T
, λ6(tf ) = 0,

evaluated at the optimal control pair and corresponding states, which results in the
stated adjoint system (5) and (6), [14]. By considering the optimality conditions,

∂H

∂u1
= 0,

∂H

∂u2
= 0

and solving for u∗
1, u∗

2, subject to the constraints, the characterizations (7) can be
derived. To illustrate the characterization of u∗

1, we have

∂H

∂u1
= B1u1 − λ2r1L1 + λ6r1L1 = 0

at u∗
1 on the set {t|a1 < u∗

1(t) < b1}. On this set,

u∗
1(t) =

1
B1

(λ2 − λ6)r1L
∗
1.

Taking into account the bounds on u∗
1, we obtain the characterization of u∗

1 in
(7).

Due to the a priori boundedness of the state and adjoint functions and the re-
sulting Lipschitz structure of the ODEs, we obtain the uniqueness of the optimal
control for small tf . The uniqueness of the optimal control pair follows from the
uniqueness of the optimality system, which consists of (1) and (5), (6) with char-
acterizations (7). There is a restriction on the length of the time interval in order
to guarantee the uniqueness of the optimality system. This smallness restriction
on the length on the time interval is due to the opposite time orientations of (1),
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(5), and (6); the state problem has initial values and the adjoint problem has final
values. This restriction is very common in control problems (see [8] and [9]).

Next, we discuss the numerical solutions of the optimality system and the cor-
responding optimal control pairs, the parameter choices, and the interpretations
from various cases.

4. Numerical Results. In this section, we study numerically an optimal treat-
ment strategy of our two-strain TB model. The optimal treatment strategy is
obtained by solving the optimality system, consisting of 12 ODEs from the state
and adjoint equations. An iterative method is used for solving the optimality sys-
tem. We start to solve the state equations with a guess for the controls over the
simulated time using a forward fourth order Runge-Kutta scheme. Because of the
transversality conditions (6), the adjoint equations are solved by a backward fourth
order Runge-Kutta scheme using the current iteration solution of the state equa-
tions. Then, the controls are updated by using a convex combination of the previous
controls and the value from the characterizations (7). This process is repeated and
iteration is stopped if the values of unknowns at the previous iteration are very
close to the ones at the present iteration.

For the figures presented here, we assume that the weight factor B2 associated
with control u2 is greater or equal to B1 which is associated with control u1. This
assumption is based on following facts: The cost associated with u1 will include
the cost of screening and treatment programs, and the cost associated with u2 will
include the cost of holding the patients in the hospital or sending people to watch
the patients to finish their treatment. Treating an infectious TB individual takes
longer (by several months) than treating a latent TB individual. In these three
figures, the set of the weight factors, B1 = 50 and B2 = 500, is chosen to illustrate
the optimal treatment strategy. Other epidemiological and numerical parameters
are presented in Tables 1 and 2, respectively. We will discuss briefly the cases with
different values of B1 and B2 later in this section.

Figure 1 shows the optimal treatment strategy for the case of B1 = 50 and
B2 = 500. In the top frame, the controls, u1 (solid curve) and u2 (dashdot curve),
are plotted as a function of time. In the bottom frame, the fractions of individuals
infected with resistant TB, (L2 + I2)/N , with control (solid curve) and without
control (dashed curve) are plotted. Parameters N = 30000 and β∗ = 0.029 are
chosen. Other parameters are presented in Tables 1 and 2. To minimize the total
number of the latent and infectious individuals with resistant TB, L2 + I2, the
optimal control u2 is at the upper bound during almost 4.3 years and then u2 is
decreasing to the lower bound, while the steadily decreasing value for u1 is applied
over the most of the simulated time, 5 years. The total number of individuals
L2 + I2 infected with resistant TB at the final time tf = 5 (years) is 1123 in the
case with control and 4176 without control, and the total cases of resistant TB
prevented at the end of the control program is 3053 (= 4176 − 1123).

Figure 2 illustrates how the optimal control strategies depend on the parame-
ter β∗, which denotes the transmission rate of primary infections of resistant TB.
The value of β∗ is usually given by the product of the number of contacts (with
an infectious individuals with resistant TB) per person per unit of time and the
probability of being infected with resistant TB per contact. This value varies from
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Figure 1. The optimal control strategy for the case of B1 = 50 and
B2 = 500.
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Figure 2. The controls u1 are plotted as a function of time for the
4 different values of β∗, 0.0131, 0.0217, 0.0290, and 0.0436 and the only
one control u2 (top curve) is plotted because u2 remains almost the same
as β∗ increases.

place to place depending on many factors including living conditions. In Figure 2,
the controls, u1 (dark color curves) and u2 (light color curves), are plotted as a
function of time for the 4 different values of β∗, 0.0131, 0.0217, 0.0290, and 0.0436.



480 E. JUNG, S. LENHART, AND Z. FENG

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

C
on

tr
ol

 u
1 N = 6000

N = 12000

N = 30000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

C
on

tr
ol

 u
2

Time (years)

N = 6000

N = 12000 N = 30000

Figure 3. The controls, u1 and u2, are plotted as a function of time
for N = 6000, 12000, and 30000 in the top and bottom frame, respec-

tively.

These values for β∗ are chosen from [4]. Other parameters are presented in Tables
1 and 2. Figure 2 shows that u1 plays an increasing role while u2 remains almost
the same as β∗ decreases (that is why only one u2 graph is shown). This is an
expected result because when β∗ is smaller, the new cases of resistant TB arise
more from infections acquired from L1 and I1 due to treatment failure than from
primary infections. In this case, identifying and curing latently infected individ-
uals with sensitive TB becomes more important in the reduction of new cases of
resistant TB.

In Figure 3, the controls, u1 and u2, are plotted as a function of time for N =
6000, 12000, and 30000 in the top and bottom frame, respectively. Other parame-
ters except the total number of individuals and β∗ = 0.029 are fixed for these three
cases and presented in Tables 1 and 2. These results show that more effort should
be devoted to “case finding” control u1 if the population size is small, but “case
holding” control u2 will play a more significant role if the population size is big.
Note that, in general, with B1 fixed, as B2 increases, the amount of u2 decreases.
A similar result holds if B2 is fixed and B1 increases.

In conclusion, our optimal control results show how a cost-sffective combination
of treatment efforts (case holding and case finding) may depend on the population
size, cost of implementing treatments controls and the parameters of the model. We
have identified optimal control strategies for several scenarios. Control programs
that follow these strategies can effectively reduce the number of latent and infectious
resistant-strain TB cases.
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Parameters Values
β1 13
β2 13
β∗ 0.0131, 0.0217, 0.029, 0.0436
mu 0.0143
d1 0
d2 0
k1 0.5
k2 1
r1 2
r2 1
p 0.4
q 0.1
N 6000, 12000, 30000
Λ µN
S(0) (76/120)N
L1(0) (36/120)N
I1(0) (4/120)N
L2(0) (2/120)N
I2(0) (1/120)N
T (0) (1/120)N

Table 1. Parameters and their values

Computational parameters Symbol
Final time tf 5 years
Timestep duration dt 0.1 year
Upper bound for controls 0.95
Lower bound for controls 0.05
Weight factor associated with u1 B1 50
Weight factor associated with u2 B2 500

Table 2. Computational parameters
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