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Abstract

There are many biological steps between viral infection of CD4þ T cells and the production of HIV-1 virions. Here we incorporate an

eclipse phase, representing the stage in which infected T cells have not started to produce new virus, into a simple HIV-1 model. Model

calculations suggest that the quicker infected T cells progress from the eclipse stage to the productively infected stage, the more likely that

a viral strain will persist. Long-term treatment effectiveness of antiretroviral drugs is often hindered by the frequent emergence of drug

resistant virus during therapy. We link drug resistance to both the rate of progression of the eclipse phase and the rate of viral production

of the resistant strain, and explore how the resistant strain could evolve to maximize its within-host viral fitness. We obtained the optimal

progression rate and the optimal viral production rate, which maximize the fitness of a drug resistant strain in the presence of drugs. We

show that the window of opportunity for invasion of drug resistant strains is widened for a higher level of drug efficacy provided that the

treatment is not potent enough to eradicate both the sensitive and resistant virus.

Published by Elsevier Ltd.
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1. Introduction

Mathematical models have proven valuable in the
understanding of human immunodeficiency virus type 1
(HIV-1) dynamics, disease progression and antiretroviral
responses (see reviews in Nowak and May (2000), Perelson
(2002),Callaway and Perelson (2002), Perelson and Nelson
(1999, 2002)). Many important insights into the hos-
t–pathogen interaction in HIV-1 infection have been
derived from mathematical modeling and analyses of
changes in the level of HIV-1 RNA in plasma when
antiretroviral drugs are administered to perturb the
equilibrium between viral production and viral clearance
in infected individuals (Ho et al., 1995; Perelson et al.,
1996, 1997; Wei et al., 1995).

In a basic HIV model that has been frequently used to
describe virus infection, there are three variables: unin-
fected CD4þ T cells, productively infected T cells, and free
virus (Nowak and May, 2000; Perelson et al., 1996). In this
model, infected cells are assumed to produce new virions
immediately after target cells are infected by a free virus.
However, there are many biological processes between viral
infection and subsequent production within a cell. For
example, after viral entry into the host cell, the viral RNA
genome is reverse transcribed into a complementary DNA
sequence by the enzyme reverse transcriptase (RT). The
DNA copy of the viral genome is then imported into the
nucleus and integrated into the genome of the lymphocyte.
When the infected lymphocyte is activated, the viral
genome is transcribed back into RNA. These RNAs are
translated into proteins that require a viral protease to
cleave them into active forms. Finally, the mature proteins
assemble with the viral RNA to produce new virus particles
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that bud from the cell. The portion of the viral life cycle
before production of virions is called the eclipse phase.
Several mathematical models have been developed that
either introduce a constant (discrete) delay (Culshaw and
Ruan, 2000; Dixit and Perelson, 2004; Herz et al., 1996;
Nelson et al., 2000) to denote the eclipse phase, or assume
that the time delay is approximated by some distribution
functions (e.g., a gamma distribution) (Mittler et al., 1999;
Nelson and Perelson, 2002). The introduction of a time
delay in models of HIV-1 primary infection to analyze the
viral load decay under antiretroviral therapy has refined
the estimates of important kinetic parameters, such as the
viral clearance rate and the mortality rate of productively
infected cells (Nelson et al., 2000; Nelson and Perelson,
2002). Some more complex models, including age-struc-
tured models, have been employed to study virus dynamics
(Nelson et al., 2004) and the influence of drug therapy on
the evolution of HIV-1 (Kirschner and Webb, 1996; Rong
et al., 2007a).

It should be noted that the above-mentioned age-
structured models essentially treat the transition of a cell
from the uninfected state to the productively infected state
as a deterministic process by taking into account the time
delay that occurs between various steps in the virus life
cycle within a target cell. In contrast, in this study we
incorporate an eclipse stage to describe the stage of an
infected cell between viral attachment and generation of
new virus. The present stage-structured model implicitly
treats the progression of an infected cell from the initial
infection to subsequent reproduction as an exponentially
distributed process. We have chosen to adopt the stage-
structured approach because it allows us to explore
mechanistically biological trade-offs between protein func-
tions and drug resistance while avoiding the complications
of time delay models.

The advent of highly active antiretroviral therapy
(HAART) has been an important breakthrough in HIV-1
treatment, resulting in a great reduction in the morbidity
and mortality associated with HIV infection (Simon and
Ho, 2003). However, the clinical benefits of combination
therapy are often compromised by the frequent emergence
of drug resistance driven by the within-host selective
pressure of antiretroviral drugs (Clavel and Hance, 2004).
In addition, the persistence of viral reservoirs, including
latently infected resting memory CD4þ T cells that show
minimal decay even in patients on HAART up to many
years (Chun et al., 1997; Finzi et al., 1997; Wong et al.,
1997; Zhang et al., 1999), has been a major obstacle to the
long-term control or eradication of HIV-1 in infected
individuals.

Drug resistance results from mutations that emerge in
the viral proteins targeted by antiretroviral agents. Most of
our knowledge regarding resistance comes from the
genotypic analysis of virus isolates from patients receiving
prolonged drug treatment (Larder, 1996). Important
insights into the mechanisms underlying the evolution of
drug resistant viral strains have also been derived from

mathematical modeling of virus dynamics and antiretro-
viral responses (Bonhoeffer and Nowak, 1997; Kirschner
and Webb, 1997; Nowak et al., 1997; Ribeiro and
Bonhoeffer, 2000; Ribeiro et al., 1998; Stilianakis et al.,
1997). Both deterministic and stochastic modeling ap-
proaches suggest that treatment failure is mostly likely due
to the preexistence of drug resistant strains before the
initiation of therapy rather than the generation of resistant
virus during the course of treatment (Bonhoeffer and
Nowak, 1997; Ribeiro and Bonhoeffer, 2000). The evolu-
tion of HIV resistance is associated with selective pressures
exerted by drug treatments that are not potent enough to
completely suppress the viral replication. The longer the
drug efficacy remains in the intermediate range, the greater
the possibility that drug resistant virus variants will arise
during therapy (Mugavero and Hicks, 2004). Nonetheless,
the conditions of mutant selection are very complex in
treated patients due to time-dependent intracellular drug
concentrations in vivo (Dixit and Perelson, 2004; Huang
et al., 2003) and spatial heterogeneity (Kepler and
Perelson, 1998). The management of such patients requires
a careful understanding of the mechanistic evolution of
HIV-1 variants during treatment.
The evolution of resistant strains in the presence of drugs

is thought to depend on inherent trade-offs that exist
between the proper functioning of HIV’s RT and protease
enzymes and their reduced susceptibility to antiretroviral
regimens in their mutated forms. Indirect evidence for
such trade-offs is found in the observation that there is a
reduction in replication capacity for drug resistant virus
variants in the absence of drug therapy (Clavel et al., 2000;
Nijhuis et al., 2001). These trade-offs not only help explain
that even after drug resistance arises viral load often
remains partially suppressed below pre-therapy levels but
also could be potentially exploited in order to better
manage the evolution of drug resistance within a patient.
The main purpose of this study is to develop a

mathematical framework that can be used to formalize
and examine simple hypotheses about the life-history
trade-offs that allow drug-resistant viral strains within a
patient to persist in the presence of drug therapy. We
incorporate the eclipse phase of viral replication into a
mathematical model to characterize the stage during which
infected CD4þ T cells have not yet started to produce new
virus. The inclusion of the progression of infected cells
from this eclipse phase to the productive stage enables us to
capture more variability in HIV dynamics. We observe that
the strain of virus with a faster progression rate essentially
has a quicker process of reverse transcription of RNA into
DNA and integration of the DNA into the chromosome,
which gives rise to an increased chance for that viral strain
to persist. More importantly, our approach allows us to
link drug resistance to RT inhibitors to the progression of
the eclipse phase and identify the optimal evolutionary
strategy for the drug resistant strain under some simple
assumptions. It is widely believed that most HIV drug
resistance mutations affect highly conserved amino acid
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residues that are thought to be important for optimal
enzyme functions, and thus for the full replicative potential
of virus (Clavel et al., 2000). Consequently, we assume that
in the absence of drug therapy the wild-type strain will
evolve to replicate as fast as possible and produce as many
new virions as possible. Thus, a viral strain with a slower
progression rate, which is operating suboptimally, will
possibly have a higher level of resistance to antiretroviral
drugs, creating a trade-off between the progression rate
and the drug efficacy of RT inhibitors. In addition, there
are trade-offs between the viral production rate and the
clearance rate of productively infected cells (De Paepe and
Taddei, 2006), and between the viral production rate and
the drug efficacy of protease inhibitors (see the last section
for more discussions). We will investigate how these trade-
offs may affect the fitness of drug-resistant viral strains in
the presence of drugs at different concentration levels. The
optimal progression rate and the optimal viral production
rate are derived by maximizing the viral fitness of drug-
resistant strains. An invasion criterion of resistant strains
is also obtained in the presence of drug therapy. Both
analytical results and numerical simulations suggest that
with a more effective drug treatment (yet not potent
enough to eradicate the virus), a wider range of drug-
resistant strains will be able to invade in response to the
selective pressure of drugs.

2. Model formulation

A basic mathematical model has been widely adopted to
describe the virus dynamics of HIV-1 infection in vivo (see
Perelson et al. (1996) and reviews in Nowak and May
(2000), Perelson (2002), Perelson and Nelson (1999)).
Important features of the interaction between virus
particles and cells have been determined by fitting the
model to experimental data. In this paper, we extend the
basic model by including a class of infected cells that are
not yet producing virus and two viral strains to study
the evolution of drug resistant strains.

2.1. Inclusion of cells in the eclipse phase

After a virus enters a target CD4þ T cell, there are a
number of biological events before the production of new
virions: reverse transcription from viral RNA to DNA,
integration of the DNA copy into the DNA of the infected
cell (the integrated viral DNA is called the provirus),
transcription of the provirus and translation to generate
viral polypeptides, cleavage of polypeptides by the HIV
protease, assembly and budding of new virus. Perelson
et al. (1993) examined a model for the interaction of HIV
with CD4þ T cells that considers a class of infected T cells,
which contain the provirus but are not producing virus. In
this work, we begin with a modification of the model in
Perelson et al. (1993), and then incorporate antiretroviral
effects to study the evolution of drug resistance.

As suggested in Zack et al. (1990), when a virus enters a
resting CD4þ T cell, the viral RNA may not be completely
reverse transcribed into DNA. If the cell is activated
shortly following infection, reverse transcription can
proceed to completion. However, the unintegrated virus
harbored in resting cells may decay with time and partial
DNA transcripts are labile and degrade quickly (Zack
et al., 1992). Hence a proportion of resting infected cells
can revert to the uninfected state before the viral genome is
integrated into the genome of the lymphocyte (Essunger
and Perelson, 1994). To model these events, we include a
class of infected cells in the eclipse stage of viral replication,
i.e., the stage between the initial infection and subsequent
viral production. Thus, a portion of infected cells in the
eclipse phase can revert to the uninfected class. Let TðtÞ,
T�EðtÞ, T�ðtÞ and V ðtÞ denote the concentrations of
uninfected CD4þ T cells, infected cells in the eclipse stage,
productively infected cells, and free virus particles at time t,
respectively. The model can be described by the following
equations:

d

dt
TðtÞ ¼ l� dT � kVT þ bT�E ,

d

dt
T�EðtÞ ¼ kVT � ðbþ fþ dEÞT

�
E ,

d

dt
T�ðtÞ ¼ fT�E � dT�,

d

dt
V ðtÞ ¼ pT� � cV , (1)

where l is the recruitment rate of uninfected T cells, d is the
per capita death rate of uninfected cells, k is the rate
constant at which uninfected cells get infected by free virus.
d is the per capita death rate of productively infected cells,
p is the viral production rate of an infected cell, and c is the
clearance rate of free virus. Cells in the eclipse phase revert
to the uninfected T class at a constant rate b. In addition,
they may alternatively progress to the productively infected
class T� at the rate f, or die at the rate dE . Note that our
model assumes that the expected residence time of a cell in
the eclipse phase is exponentially distributed, and the
parameter f is determined, in part, by the activity of RT.
For example, if reverse transcription is quick, then f will
be large and the infected cells in the eclipse phase will
progress to the productively infected state with a high
probability, i.e., f=ðbþ fþ dEÞ.
As with the basic HIV model, there are two possible

steady states of model (1). One steady state is the infection-
free steady state, the other is the infected steady state.
If we define

R0 ¼
klpf

ðbþ fþ dEÞdcd
, (2)

then it can be shown in Appendix A that the infected
steady state exists if and only if R041. In fact, R0 can be
written as the product of klp=ðdcdÞ and f=ðbþ fþ dEÞ.
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Obviously, klp=ðdcdÞ is the basic reproductive ratio of the
standard model without the eclipse phase. f=ðbþ fþ dEÞ

is the probability that an infected T cell survives the eclipse
phase. Therefore, R0 in (2) defines the basic reproductive
ratio for model (1). It is further shown that R0 determines
whether the virus population dies out or persists. The
infection-free steady state Ē is locally asymptotically stable
(l.a.s.) if R0o1 and unstable if R041. The infected steady
state ~E is l.a.s. whenever it exists, i.e., when R041.

It is clear that R0 defined in (2) is an increasing function
of the progression rate f (a larger value of f corresponds
to quicker reverse transcription) and a decreasing function
of the mortality rate dE . Thus, with all else equal, we expect
that the viral strain that can complete reverse transcription
more quickly is more likely to lead to a more severe
infection (e.g., viral persistence at a higher infection level).
This is supported by numerical simulations (Figs. 1 and 2).

In Fig. 1, R0 is plotted as either a function of f or a
function of dE . In Fig. 1(a), dE ¼ 0:7 day�1 (or ln 2=dE ¼

1 day (Zack et al., 1990)) is fixed. It shows that R041 for
f40:23 day�1, in which case the viral load will converge to
the infected steady state, and thatR0o1 for fo0:23 day�1,
in which case the virus population will die out (the
infection-free steady state). In Fig. 1(b), f ¼ 1:1 day�1 (or
1=f ¼ 0:9 days (Perelson et al., 1996)) is fixed. Other
parameter values are chosen from the literatures: k ¼

2:4� 10�8 ml day�1 (Perelson et al., 1993); l ¼
104 ml�1 day�1 (Dixit and Perelson, 2004); d ¼ 0:01 day�1

(Mohri et al., 1998); c ¼ 23 day�1 (Ramratnam et al.,
1999); d ¼ 1 day�1 (Markowitz et al., 2003). The viral
production rate p can be written as Nd, where N (burst
size) is the total number of virus particles released by a
productively infected cell over its lifespan (Perelson et al.,
1996). The estimate of burst size varies from 100 to a few
thousands (Haase et al., 1996; Hockett et al., 1999) and
possibly could be significantly larger (Yuan Chen et al.,
submitted for publication). Here, as an example, we choose
N ¼ 4000. Thus, p ¼ 4000 day�1. Because only a small
fraction of cells in the eclipse phase will revert to the

uninfected state (Essunger and Perelson, 1994), we assume
that b ¼ 0:01 day�1.
Fig. 2 demonstrates the dynamic behavior of the viral

load for different progression rate f or mortality rate dE .
We observe that there is a viral peak followed by an
oscillatory approach to a set-point value. As f increases,
the time needed to reach the peak viral load is shortened,
while the amplitude of the peak and the subsequent set-
point value are increased (Fig. 2(a)). We observe similar
behaviors as the mortality rate dE decreases (Fig. 2(b)). The
steady state of the viral load is presented as either a
function of f (dE ¼ 0:7 day�1 is fixed, see Fig. 2(c)) or a
function of dE (f ¼ 1:1 day�1 is fixed, see Fig. 2(d)). These
results show that the viral strain that has a larger
progression rate f or a smaller mortality rate dE will have
a higher viral steady state level, and thus is more likely to
induce faster disease progression.

2.2. The model with two strains

To study the invasion of drug-resistant mutant variants
into an environment in which the wild-type strain is already
established, we incorporate both drug-resistant and drug-
sensitive strains in the model (1) and get the following two-
strain model:

d

dt
TðtÞ ¼ l� dT � ksV sT � krVrT þ bsT

�
Es þ brT

�
Er,

d

dt
T�EsðtÞ ¼ ksVsT � ðbs þ fs þ dEsÞT

�
Es,

d

dt
T�s ðtÞ ¼ fsT

�
Es � dsT

�
s ,

d

dt
VsðtÞ ¼ psT

�
s � csVs,

d

dt
T�ErðtÞ ¼ krVrT � ðbr þ fr þ dErÞT

�
Er,
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d

dt
T�r ðtÞ ¼ frT

�
Er � drT

�
r ,

d

dt
V rðtÞ ¼ prT

�
r � crV r, (3)

where the subscripts s and r represent the drug sensitive
and resistant strains, respectively.

For each strain, we obtain the corresponding reproduc-
tive ratio, which is given by

Ri ¼
kilpifi

ðbi þ fi þ dEiÞdcidi

; i ¼ s; r. (4)

Let ~Es denote the steady state in which only the drug-
sensitive strain is present and ~Er denote the steady state in
which only the drug-resistant strain is present. We prove in
Appendix B that each steady state is biologically feasible if
and only if the reproductive ratio for the corresponding
strain is greater than 1. Furthermore, if Rs4Rr41, then
~Es is l.a.s. and ~Er is unstable. IfRr4Rs, then ~Es is unstable
and ~Er is l.a.s. Therefore, the resistant strain cannot
invade the sensitive strain if RroRs. If Rr4maxðRs; 1Þ
then the resistant strain is able to invade and out-compete
the sensitive strain. We will apply this result to determine
the criterion for invasion and to examine how the resistant

virus may evolve to optimize its fitness in the presence of
antiretroviral treatment.

2.3. The model with drug therapy and resistance

We modify model (3) by incorporating combination
antiretroviral therapy. Currently, a combination of reverse
transcriptase inhibitors (RTIs) and protease inhibitors
(PIs) is commonly used in the treatment of HIV infection.
RTIs interfere with the process of reverse transcription and
prevent the infection of new target cells. PIs prevent
infected cells from producing new infectious virus particles
(Nowak and May, 2000). To incorporate these drug effects
into our model, we define �RTI and �PI to be the efficacies of
RTIs and PIs for the wild-type strain, respectively. We
define these constants relative to the impact of the drugs on
the most susceptible genetic variants of RT and protease.
As a result, �i ¼ 0 (i ¼ RTI or PI) implies that the inhibitor
is completely ineffective against wild-type virus, while �i ¼

1 implies that the inhibitor is 100% effective against them.
Note that in reality 100% effectiveness may not be
clinically feasible due to problems with drug delivery or
absorption.
When �PI is say 0.7, this implies that 70% of the wild-

type virus particles produced are non-infectious due to the
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0, and 10�6 ml�1 (Stafford et al., 2000), respectively. The steady state of the viral load is plotted as a function of f or dE in (c) and (d). When fo0:23, the
virus population dies out.
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action of the protease inhibitor. This population of virions
has previously been denoted VNI (Perelson et al., 1996).
The remaining 30% of particles are assumed not to be
affected by the PI and contain the same population of
virions as in an untreated patient. Although this popula-
tion has a mixture of infectious and non-infectious virions,
it has been previously denoted VI (Perelson et al., 1996)
and for simplicity called the infectious population. A more
precise definition would call V I the virions not made non-
infectious by the protease inhibitor. In the model below we
will follow the drug sensitive and drug resistant forms of
the V I population only, and denote them V s and Vr,
respectively. The equations for the drug sensitive and
resistant virion populations corresponding to VNI will be
ignored as they can be decoupled from the system (see (5)).

To model the reduced susceptibility of drug-resistant
virus variants to antiretroviral agents, we assume that the
drug efficacies of RTIs and PIs for the resistant strain are
reduced by factors sRTI and sPI , respectively. sRTI and sPI

are between 0 and 1. Therefore, �RTIsRTI and �PIsPI are the
drug efficacies of RTIs and PIs for the resistant strain.
si ¼ 1 (i ¼ RTI or PI) corresponds to the completely drug-
sensitive strain while si ¼ 0 corresponds to the completely
drug-resistant strain.

In order to focus on the role of the progression rate of
cells in the eclipse phase, f, and the viral production rate,
p, on the evolution of drug-resistant virus, we assume that
all other parameters for the two strains in model (3) are
equal, i.e.,

ki ¼ k; bi ¼ b; dEi ¼ dE ; ci ¼ c; where i ¼ s; r.

The cost of drug resistance will be discussed later.
The modified model including antiretroviral drugs and

resistance can be described by the following equations:

d

dt
TðtÞ ¼ l� dT � kVsT � kVrT þ bT�Es þ bT�Er,

d

dt
T�EsðtÞ ¼ kVsT � ðbþ fsð1� �RTI Þ þ dEÞT

�
Es,

d

dt
T�s ðtÞ ¼ fsð1� �RTI ÞT

�
Es � dsT

�
s ,

d

dt
V sðtÞ ¼ psð1� �PI ÞT

�
s � cVs,

d

dt
T�ErðtÞ ¼ kVrT � ðbþ frð1� �RTIsRTI ðfrÞÞ þ dEÞT

�
Er,

d

dt
T�r ðtÞ ¼ frð1� �RTIsRTI ðfrÞÞT

�
Er � drðprÞT

�
r ,

d

dt
V rðtÞ ¼ prð1� �PIsPI ðprÞÞT

�
r � cVr. (5)

In the above model, the progression rate of cells in the
eclipse class to the productively infected state is reduced
due to the effect of RTIs and the viral production rate of
infectious virus is reduced due to the effect of HIV protease

inhibitors. As noted above, the equations for the non-
infectious particles generated by the PI decouple from the
system. These equations are

d

dt
VNI

s ðtÞ ¼ ps�PI T�s � cV NI
s ,

d

dt
VNI

r ðtÞ ¼ pr�PIsPI ðprÞT
�
r � cV NI

r .

The total drug sensitive and drug resistant populations are
then V s þ VNI

s and Vr þ V NI
r , respectively.

Because HIV resistance is usually associated with
changes of highly conserved amino acid residues that are
believed to be essential for the optimal enzyme function,
drug-resistant variants display some extent of resistance-
associated loss of viral fitness in the absence of therapy
(Clavel et al., 2000; Coffin, 1995). We incorporate this
feature in our model by assuming a reduced progression
rate f and a reduced viral production rate p for the
resistant strain. Based on the arguments given previously,
we assume that infected cells of the wild-type strain, the
most susceptible strain to drug therapy, have the maximal
progression rate, fs, and the maximal viral production
rate, ps. Therefore, for all resistant strains we have frofs

and props.
We further assume that the resistance factor, sRTI , is an

increasing function of fr. The justification for this
assumption is the following. fr is mainly determined by
the activity of RT, and the more resistant a strain is to an
RTI (a smaller sRTI ) the more likely that the RT of that
strain functions poorly (a smaller fr). Thus, we assume
that sRTI is an increasing function of fr. Similarly, we
assume that sPI is an increasing function of the viral
production rate pr, which reflects the fact that the more
drug-resistant a strain is to a protease inhibitor, the more
poorly its protease functions and hence the lower the
capacity to produce new infectious virus (Clavel et al.,
2000; Zennou et al., 1998).
As suggested in Coombs et al. (2003), Gilchrist et al.

(2004), the mortality rate of productively infected cells is
also an increasing function of the viral production rate.
This is because the loss of cell resources utilized to produce
virus may impair cell functions. In addition, cell-mediated
immune responses are likely to rapidly kill cells expressing
more viral proteins.
To summarize, in model (5) we have assumed that

sRTI ðfrÞ, sPI ðprÞ and drðprÞ are all increasing functions,
with sRTI ðfsÞ ¼ sPI ðpsÞ ¼ 1 and drðprÞ ¼ ds when pr ¼ ps,
i.e., drðpsÞ ¼ ds.

3. Results

In this section, we use model (5) and the results in
previous sections to investigate the evolution of drug-
resistant strains in the presence of antiretroviral treatment.
Specifically, we study how the resistant virus evolves to
maximize its fitness, and derive the range of drug efficacy in
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which the drug-resistant strain will be able to invade and
out-compete the wild-type strain.

3.1. Optimal fr and pr that maximize viral fitness

Within-host viral fitness has received increasing interest
due to its potential clinical implications for viral load, drug
resistance, and disease progression (see reviews in Clavel
et al. (2000), Nijhuis et al. (2001), Quinones-Mateu and
Arts (2001)). The term fitness is commonly used in clinical
settings to describe the ability of a virus to effectively
replicate in a particular environment. Due to the fact that
drug-resistant virus is less susceptible to antiretroviral
regimens, the mutant variant is more fit than the wild-type
virus in the presence of drug, although resistance mutations
may decrease the intrinsic capacity of the virus to replicate.
In practice, it still remains unclear which assay is most
appropriate to measure the fitness of HIV-1 isolates, and
many studies have been performed to test different
hypotheses that extend the definition of relative fitness
(reviewed in Quinones-Mateu and Arts (2001)). The basic
reproductive ratio is a commonly used measure of the
absolute fitness of a virus within a host (Gilchrist et al.,
2004). In this section we examine the effect of antiretroviral
treatment on the HIV-1 fitness of resistant virus by
analyzing the reproductive ratio in the presence of therapy.

The reproductive ratio of the resistant strain (in the
presence of therapy) for model (5), denoted by Rr, is given
by a function of fr and pr (see (4)):

Rrðfr; prÞ ¼
kl
dc

F 1ðfrÞF 2ðprÞ, (6)

where

F1ðfrÞ ¼
frð1� �RTIsRTI ðfrÞÞ

bþ frð1� �RTIsRTI ðfrÞÞ þ dE

,

F2ðprÞ ¼
prð1� �PIsPI ðprÞÞ

drðprÞ
ð7Þ

and sRTI ðfrÞ, sPI ðprÞ, and drðprÞ are increasing functions as
mentioned previously.

Using the formulas (6) and (7) we can find the optimal
f�r and p�r that maximize the reproductive ratio Rrðfr; prÞ.
Because we assume that fr and pr are independent, we can
maximize F1ðfrÞ and F2ðprÞ individually. When specific
forms of the functions sRTI ðfrÞ, sPI ðprÞ, and drðprÞ are
given we are able to obtain explicit formulas for f�r and p�r .
Before we discuss some particular forms of these functions,
we present the following result in terms of general
functions, which provides some convenient criteria for
finding the optimal f�r and p�r . The proof can be found in
Appendix C.

Proposition 1. (i) Rr is maximized at f�r 2 ð0;fsÞ if there

exists a unique value f�r satisfying

1� �RTIsRTI ðf
�
r Þ � f�r �RTIs0RTI ðf

�
r Þ ¼ 0; 0of�rofs,

(8)

and

s00RTI ðf
�
r ÞX0. (9)

(ii) Rr is maximized at p�r 2 ð0; psÞ if there exists a unique

value p�r satisfying

½1� �PIsPI ðp
�
r Þ � �PI p�rs

0
PI ðp

�
r Þ�drðp

�
r Þ

¼ p�r ½1� �PIsPI ðp
�
r Þ�d
0
rðp
�
r Þ ð10Þ

and

s00PI ðp
�
r ÞX0; d00r ðp

�
r ÞX0. (11)

Proposition 1 suggests that if sRTI ðfrÞ, sPI ðprÞ and drðprÞ

are concave up functions, then Eqs. (8) and (10) determine
the optimal progression rate f�r and the optimal viral
production rate p�r , respectively. It should be noted that the
concave up property is not required in Proposition 1, as the
four conditions, (8)–(11), involve only f�r and p�r .

We now consider some specific forms of the increasing
functions sRTI ðfrÞ, sPI ðprÞ and drðprÞ. Noticing that frpfs

and sRTI ðfsÞ ¼ 1, we choose sRTI ðfrÞ to be a simple power
function

sRTI ðfrÞ ¼
fr

fs

� �a

, (12)

where aX1 is a constant, ensuring that the second
derivative is nonnegative. From Proposition 1 we get the
optimal progression rate f�r ¼ fs=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�RTI ð1þ aÞa

p
(see (8)).

Therefore, we can establish the following result:

Result 1. Let sRTI ðfrÞ be given in (12). Then

(i) if 0o�RTIo 1
1þa

, then the optimal progression rate f�r is

fs; and

(ii) if 1
1þa

o�RTIo1, then the optimal progression rate is

an intermediate value within ð0;fsÞ; i.e., f�r ¼
fs=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�RTI ð1þ aÞa

p
ofs.

This result suggests that when the drug efficacy �RTI is
low, the best strategy for a resistant strain to achieve the
maximal viral fitness is unchanged from the non-treatment
scenario, i.e., infected cells in the eclipse phase need to
progress to the productively infected state as soon as
possible. When the drug efficacy is high, the optimal viral
fitness is achieved at an intermediate value f�r ¼ fs=ð2�RTI Þ

(in the case of a ¼ 1), instead of the maximal progression
rate fs.

To examine the optimal production rate p�r , we assume
that the drug resistance factor sPI ðprÞ is a linear function of
pr, and that the death rate of productively infected cells of
the resistant strain follows a non-linear relationship
between the cell death and viral production as examined
in Coombs et al. (2003); i.e.,

sPI ðprÞ ¼
pr

ps

and drðprÞ ¼
b
2

� �
pr

ps

� �2

þm, (13)
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where prpps, b is a constant and m is a fixed background
mortality rate. Since we require that the function value
drðpÞ evaluated at p ¼ ps (the wild-type strain) is exactly the
constant ds, b can be chosen to be 2ðds �mÞ. Then, using
(10) we obtain the following result for the optimal
production rate p�r .

Result 2. Let sPI ðprÞ and drðprÞ be given by (13). Then the

optimal production rate p�r determined by Eq. (10) is

p�r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2�2PI þ 2mb

p
� 2m�PI

b
ps. (14)

Moreover, if dso2m, then ~�PI ¼ 1� ds

2m
provides a threshold

such that

(i) the optimal production rate of resistant virus is ps if

0o�PIo~�PI ; and

(ii) the optimal production rate of resistant virus is an

intermediate value given by (14) if ~�PIo�PIo1.

The formula (14) allows us to study the effect of the
background mortality rate, m, on the viral fitness. As
m! 0, the optimal production rate p�r ! 0. A straightfor-
ward calculation shows that F2ðp

�
r Þ ! þ1. This implies

that slow production is the best strategy for long-lived

infected cells. This result is consistent with the observation
in Coombs et al. (2003).

These results are demonstrated in Fig. 3. Fig. 3(a)
illustrates the optimal progression rate f�r for the special
case a ¼ 1 in (12). f�r is plotted as a function of the drug
efficacy of RTIs, �RTI . Fig. 3(b) plots the optimal
production rate p�r as a function of the drug efficacy of
protease inhibitors, �PI . In these graphs, m is chosen to be
the same as dE , and the values for other parameters are the
same as those in Fig. 1.
Fig. 3(c) and (d) plot the reproductive ratios for the

drug-resistant strain using the optimal values f�r and p�r
(as shown in the upper panel) and the wild-type strain. The
flat surface is constant 1, the upper surface is for the
reproductive ratio of the drug-resistant strain (Rr, r for
resistant strain), and the lower surface is for that of the
wild-type strain (Rs, s for sensitive strain). We choose
different background mortality rates of infected cells. For
example, in Fig. 3(c) m ¼ dE and hence b ¼ 2ðds � dEÞ, and
in Fig. 3(d) m ¼ d and hence b ¼ 2ðds � dÞ. In both cases,
the reproductive ratio of the resistant strain (Rr) is always
greater than or equal to that of the sensitive strain (Rs).
We observe that for a large background mortality rate m

(for example, m is equal to the death rate of infected cells in
the eclipse phase), Rr becomes less than one as drug
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Fig. 3. (a) Plot of the optimal progression rate f�r as a function of the drug efficacy of RTIs. (b) Plot of the optimal production rate p�r as a function of the

drug efficacy of PIs. (c) and (d) are plots of the reproductive ratios of the drug-resistant strain using the optimal f�r and p�r (as shown in (a) and (b)) and the

wild-type strain. In (c) we assume m ¼ dE ¼ 0:7day�1; in (d) m ¼ d ¼ 0:01 day�1. The other parameters are: k ¼ 2:4� 10�8 ml day�1, l ¼ 104 ml�1 day�1,

d ¼ 0:01 day�1, c ¼ 23day�1, b ¼ 0:01 day�1, dE ¼ 0:7day�1, ds ¼ 1day�1, fs ¼ 1:25 day�1, ps ¼ 4000day�1. The flat surface is constant 1, the upper

surface is for the reproductive ratio of the drug-resistant strain (Rr), and the lower surface is for that of the wild-type strain (Rs). We observe that in both

cases, Rr is always greater than or equal to Rs. In (c), Rr becomes less than 1 for a high level of drug efficacy, while in (d) Rr is always greater than 1.
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efficacy increases although it is always greater than or
equal to Rs. Thus, in this case both strains of virus will be
eradicated for a high drug efficacy (Fig. 3(c)). However, if
the background mortality rate is very small (for example, m

is equal to the death rate of uninfected T cells), then the
threshold value of �PI corresponding to (14) is ~�PI ¼ 1� ds

2d
,

which is less than zero. Hence, the optimal production rate
p�r is always given by the intermediate value determined by
(14). In this case, simulation results show that Rr is always
greater than bothRs and 1 (Fig. 3(d)), and according to the
result given in Section 2.2, the drug-resistant strain that
evolves with the optimal f�r and p�r will always be able to
invade and out-compete the wild-type strain in the presence
of drug therapy.

3.2. Invasion criterion

In the previous section, we have shown that if the drug-
resistant strain continuously evolves to adopt the optimal
f�r and p�r that maximize its viral fitness, then the resistant
strain will always be expected to emerge and out-compete
the established wild-type strain, provided that the anti-
retroviral treatment is not potent enough to eradicate both
strains. Now a natural question arises: if the optimal viral
fitness is not achieved, is it possible that the drug-resistant
strain can still invade the population of the wild-type virus?
If yes, what is the invasion criterion? Below we attempt to
address these questions using model (5).

To derive the condition under which a drug-resistant
strain (with parameters fr and pr, frofs and props) can
invade the sensitive-strain in the presence of drug therapy,
we assume that the population of wild-type virus is at the
infected steady state. Recall that the infected steady state
exists only if the reproductive ratio of the wild-type strain is
greater than 1. From Section 2.2, the drug-resistant strain
will be able to invade the wild-type strain if the following
condition is satisfied:

Rr4Rs. (15)

The reproductive ratio for the drug-resistant strain in the
presence of therapy is given by (see (4), (6) and (7))

Rr ¼
k

c

l
d

F 1ðfrÞF 2ðprÞ; 0ofrofs; 0oprops (16)

and the reproductive ratio for the wild-type strain is

Rs ¼
k

c

l
d

F 1ðfsÞF 2ðpsÞ, (17)

where the functions F 1 and F 2 are given in (7)). Using the
criterion (15) and formulas (16) (17), we can establish the
following result. The proof is given in Appendix D.

Result 3. (i) When both drug efficacies, �RTI and �PI , are low

then the resistant strain cannot invade the sensitive strain. (ii)
If the drug efficacies are above certain threshold values then

invasion is possible by a resistant strain for which the

progression rate fr and the viral production rate pr are in

some given ranges.

Clearly, the invasion ranges defined by (37) and (38) in
Appendix D depend on the drug efficacies �RTI and �PI . In
fact, such ranges increase with increasing �RTI and �PI (see
Fig. 4). Also, if the background death rate m is much
smaller than ds, then from the formula (38) we can see that
Rr4Rs for almost all values of pr such that props.
In Fig. 4, the reproductive ratios Rs and Rr are plotted

either as a function of fr (Figs. 4(a) and (b)) or as a
function of pr (Figs. 4(c) and (d)) for different values of
�RTI or �PI . For example, Figs. 4(a) and (b) are for �RTI ¼

0:4 and �RTI ¼ 0:5, respectively, for fixed values of �PI ¼ 0
and a ¼ 3 (see Eq. (12)). We observe that the range in
which Rr4Rs is bigger for a larger value of �RTI ,
suggesting that for a more effective drug therapy, the
resistant strain can invade the sensitive strain at a smaller
progression rate fr.
Figs. 4(c) and (d) are for �PI ¼ 0:5 and �PI ¼ 0:6,

respectively, for a fixed value of �RTI ¼ 0. We have
assumed that the background mortality rate m is equal to
dE , hence b ¼ 2ðds � dEÞ. We observe again that the range
in which Rr4Rs is bigger for a larger value of �PI .
Therefore, for a higher protease inhibitor drug efficacy, the
resistant strain can invade the sensitive strain at a smaller
production rate pr.

4. Discussion and conclusion

Advances in the development of potent combination
antiretroviral therapy have dramatically reduced HIV-
related morbidity and mortality in the developed world.
However, increasing emergence of resistance to antiretro-
viral drugs could challenge this achievement. The rapid
development of drug resistant HIV variants is due to the
high turnover of HIV—approximately 10 billion new virus
particles are produced per day in the average mid-stage
HIV-infected untreated patient (Perelson et al., 1996)—and
the exceptionally high error rate of HIV reverse transcrip-
tase (RT). This leads to a high mutation rate and constant
production of new viral strains, even in the absence of drug
therapy. Understanding the evolution of viral resistance
during therapy has far-reaching implications in predicting
treatment outcomes and designing treatment strategies
employed in clinical practice.
In this work, we have developed a mathematical model

to explore the initial constraints that may shape the
evolution of viral resistance to antiretroviral drugs. We
focused on the interactions between two classes of drugs
(reverse transcriptase inhibitors (RTIs) and protease
inhibitors) and the enzymes they target, and the trade-offs
that are likely to result from such interactions. For RT and
its inhibitor we assumed that there is a trade-off between
the efficiency of RT and its susceptibility to the inhibitor.
Our rationale was as follows: within-patient selection
should favor the virus that maximizes its burst size N, the
total number of virions made by an infected cell during its
lifetime (Gilchrist et al., 2004). The burst size is a function
of the lifespan of the infected cell, with longer living cells
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potentially able to make more virions. Due to the mortality
rate of an infected cell the contribution of virion
production to N is effectively discounted as the infected
cell ages. In addition, viral mRNA is susceptible to attack
by host nucleases once it enters the cell. As a result, within-
host selection will inherently favor the virus with an RT
that can rapidly reverse transcribe the virus’ genome and
integrate it into the host’s genome. Because we expect these
forms of RT to be favored by within-host selection we also
expect them to be the most susceptible to inhibition by
drugs designed to interfere with their activity. Along the
same line of reasoning, other forms of RT that have low
activity levels are expected to have low frequencies within
the host, maintained primarily by drift and mutation.
However, the very genetic changes that confer low activity
levels to these RT variants are also likely to confer some
resistance to the drugs designed to target RT with high
activity levels. As a result we posit that there is likely a
simple trade-off between RT activity and susceptibility to
RT inhibitors.

The HIV protease also plays a critical role in the virus’
life cycle by converting a viral polypeptide into mature and
functional viral proteins necessary for viral infectivity.
Because mutations associated with the emergence of drug
resistance to protease inhibitors modify some key viral
proteins (Barrie et al., 1996; Winslow et al., 1995), the virus

forced to develop resistance under drug pressure is thought
to have a substantial impairment in its replicative capacity
(Clavel and Hance, 2004) even though some additional
mutations can compensate for this impaired viral replica-
tion potential (Nijhuis et al., 2001). We thus expect that
there is a trade-off between the efficacy of protease
inhibitors and the viral production rate for the drug-
resistant virus variants selected during therapy.
Once a cell begins actively producing virions it becomes

highly susceptible to attack by the patient’s immune
response and viral cytopathic effects. Viral cytopathicity
and cell-mediated immune responses are assumed to
depend on the rate of viral production. If the mortality
rate of infected cells is a concave up function with respect
to the viral production rate, then the optimal viral
production rate is likely to be at some intermediate level
below its physiological maximum (Gilchrist et al., 2004).
Under such conditions, an intermediate production rate
will maximize the within-patient viral fitness by maximizing
the burst size N. This is consistent with our findings when
drug resistance to antiretroviral regimens is considered in
the model. It should be mentioned that our model assumes
that the viral production rate is time independent. When
the production rate is allowed to vary with time during
infection, the optimal production schedule to maximize the
burst size is still to produce virus at a constant rate

ARTICLE IN PRESS

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

φ
r

R
e

p
ro

d
u

c
ti
v
e

 r
a

ti
o

R
s

R
r

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

φ
r

R
e

p
ro

d
u

c
ti
v
e

 r
a

ti
o

0 1000 2000 3000 4000
0

0.5

1

1.5

2

p
r

R
e

p
ro

d
u

c
ti
v
e

 r
a

ti
o

0 1000 2000 3000 4000
0

0.5

1

1.5

p
r

R
e

p
ro

d
u

c
ti
v
e

 r
a

ti
o

R
s

R
r

R
s

R
r

R
s

R
r
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(Coombs et al., 2003). More results on the optimal viral
production schedule from the perspective of virus can be
found in Coombs et al. (2003).

Taken together, the model developed here allows us to
investigate the fitness of different HIV variants taking
into account the trade-offs between the progression of
infected cells in the eclipse phase and resistance to RT
inhibitors, between viral production and cell mortality,
and between viral production and resistance to protease
inhibitors. The model predicts that when the drug efficacy
is not high enough to exert sufficient selective pressure
(the threshold values in our example are �RTI ¼ 0:5 and
�PI ¼ 1� ds

2m
� 0:3), the resistant strain will be unable to

invade the established sensitive strain. For a more effective
drug therapy (but not potent enough to eradicate both the
wild-type and resistant strains), a wider range of resistant
virus variants can invade and out-compete the drug-
sensitive strain.

In the present model, the efficacies of antiretroviral
drugs are assumed to be constant. However, this assump-
tion may not be realistic because drug concentrations in the
blood and in cells continuously vary due to drug
absorption, distribution and metabolism. There are some
existing models that use time-varying drug concentrations
to determine the efficacy of antiviral treatment (Dixit and
Perelson, 2004; Huang et al., 2003; Wahl and Nowak, 2000;
Wu et al., 2005). The pharmacokinetic model developed by
Dixit and Perelson (2004) was also employed to determine
drug efficacies for both the sensitive and resistant strains
(Rong et al., 2007b). They showed that using the average
drug efficacy can still give a good prediction of the long-
term outcome of therapy although the viral load displays
frequent oscillations when the time-varying drug efficacy is
employed.

Another important factor that affects drug efficacy is
patients’ adherence to prescribed regimen protocols. In
fact, non-adherence and non-persistence with antiretroviral
therapy is the major reason most individuals fail to benefit
from their treatments (Becker et al., 2002). A number of
mathematical models have been developed to study the
effects of non-perfect adherence to drug regimens (Ferguson
et al., 2005; Huang et al., 2003; Phillips et al., 2001; Rong et al.,
2007b; Smith, 2006; Wahl and Nowak, 2000; Wu et al.,
2006). An overview can be found in Heffernan and
Wahl (2005). Careful modeling of drug pharmacokinetics
and more realistic adherence patterns can provide an
important tool in the study of the kinetics of evolutionary
adaptation of HIV to drug therapy and ultimately may
improve our ability to develop procedures to defeat this
deadly virus.
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Appendix A. Stability of steady states of model (1)

The infection-free steady state of model (1) is

Ē ¼ ðT̄ ; T̄
�

E ; T̄
�
; V̄ Þ ¼

l
d
; 0; 0; 0

� �
. (18)

The infected steady state is ~E ¼ ð ~T ; ~T
�

E ; ~T
�
; ~V Þ, where

~T ¼
ðbþ fþ dEÞcd

kpf
; ~T

�

E ¼
klpf� ðbþ fþ dEÞdcd

kpfðfþ dEÞ
,

~T
�
¼

f
d
~T
�

E ; ~V ¼
pf
cd

~T
�

E . ð19Þ

Using (2), ~T
�

E can be rewritten as

~T
�

E ¼
ðbþ fþ dEÞdcd

kpfðfþ dEÞ
ðR0 � 1Þ.

Therefore, the infected steady state exists if and only if
R041.
Let Ê ¼ ðT̂ ; T̂

�

E ; T̂
�
; V̂ Þ denote a steady state of model

(1). Then the characteristic equation at Ê is

�d � kV̂ � z b 0 �kT̂

kV̂ �ðbþ fþ dEÞ � z 0 kT̂

0 f �d� z 0

0 0 p �c� z

����������

����������
¼ 0,

(20)

where z is an eigenvalue. Eq. (20) can be simplified to

½ðzþ d þ kV̂ Þðzþ bþ fþ dEÞ � kV̂b�ðzþ cÞðzþ dÞ

¼ ðzþ dÞfpkT̂ . ð21Þ

(i) Let R0o1. Evaluating (21) at the infection-free steady
state Ē, we get

ðzþ dÞðzþ bþ fþ dEÞðzþ cÞðzþ dÞ ¼ ðzþ dÞfpk
l
d
.

Clearly, there is one negative eigenvalue �d, and other
eigenvalues are determined by

ðzþ bþ fþ dEÞðzþ cÞðzþ dÞ ¼ fpk
l
d
,

which can be rewritten as (see (2))

ðzþ bþ fþ dEÞðzþ cÞðzþ dÞ ¼ R0ðbþ fþ dEÞcd. (22)

If z has a nonnegative real part, then the modulus of the
left-hand side of (22) satisfies

jðzþ bþ fþ dEÞðzþ cÞðzþ dÞjXðbþ fþ dEÞcd, (23)

which leads to a contradiction in (22) since R0o1.
Therefore, all the eigenvalues have negative real parts,
and hence Ē is l.a.s.
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When R041, we define

f ðzÞ ¼ ðzþ bþ fþ dEÞðzþ cÞðzþ dÞ �R0ðbþ fþ dEÞcd.

It is clear that f ð0Þo0 and f ðzÞ ! 1 when z!1. By the
continuity we know there exists at least one positive root.
Hence, the equilibrium point Ē is unstable if R041.

(ii) Let R041. Substituting the infected steady state ~E
for Ê in the characteristic equation (21), we have

½ðzþ d þ k ~V Þðzþ fþ dEÞ þ ðzþ dÞb�ðzþ cÞðzþ dÞ

¼ ðzþ dÞðbþ fþ dEÞcd. ð24Þ

Obviously, (24) does not have a nonnegative real solution.
From (19) and (2), we can write ~V in terms of the basic

reproductive ratio in the form

~V ¼
bþ fþ dE

fþ dE

d

k
ðR0 � 1Þ.

Now we want to prove that (24) does not have any
complex root z with a nonnegative real part. Suppose,
by contradiction, that z ¼ xþ iy with xX0, y40 is a root
of (24).

When R0! 1, Eq. (24) reduces to

ðzþ dÞðzþ bþ fþ dEÞðzþ cÞðzþ dÞ

¼ ðzþ dÞðbþ fþ dEÞcd. ð25Þ

Using the same arguments as in part (i), we can show that
(25) does not have any root with a nonnegative real part.

By the continuous dependence of roots of the character-
istic equation on R0, we know that the curve of the roots
must cross the imaginary axis as R0 decreases sufficiently
close to 1. That is, the characteristic equation (24) has a
pure imaginary root, say, iy0, where y040. From (24), we
have

½ðd þ k ~V þ iy0Þðfþ dE þ iy0Þ þ ðd þ iy0Þb�ðcþ iy0Þðdþ iy0Þ

¼ ðd þ iy0Þðbþ fþ dEÞcd. ð26Þ

We now claim that the following inequality holds:

jðd þ k ~V þ iy0Þðfþ dE þ iy0Þ þ ðd þ iy0Þbj

4jd þ iy0jðbþ fþ dEÞ. ð27Þ

In fact, after straightforward computations, we have

jðd þ k ~V þ iy0Þðfþ dE þ iy0Þ þ ðd þ iy0Þbj
2

� jd þ iy0j
2ðbþ fþ dEÞ

2

¼ y4 þ ðd þ k ~V Þ2y2 þ ðfþ dEÞ
2k ~V ð2d þ k ~V Þ

þ 2bk ~V ðy2 þ ðfþ dEÞdÞ

40.

Thus, (27) holds. It follows that

jðd þ k ~V þ iy0Þðfþ dE þ iy0Þ þ ðd þ iy0Þbjjcþ iy0jjdþ iy0j

4jd þ iy0jðbþ fþ dEÞcd.

This contradicts (26). Therefore, we conclude that the
characteristic equation (24) does not have any root with a

nonnegative real part. Thus, the infected steady state ~E is
l.a.s whenever it exists.

Appendix B. Steady states and stability of model (3)

Assume that ~Es ¼ ð ~Ts; ~T
�

Es; ~T
�

s ; ~V s; 0; 0; 0Þ and ~Er ¼

ð ~Tr; 0; 0; 0; ~T
�

Er; ~T
�

r ; ~VrÞ. We have

~Ti ¼
ðbi þ fi þ dEiÞcidi

kipifi

; ~T
�

Ei ¼
kilpifi � ðbi þ fi þ dEiÞdcidi

kipifiðfi þ dEiÞ
,

~T
�

i ¼
fi

di

~T
�

Ei; ~V i ¼
pifi

cidi

~T
�

Ei; i ¼ s; r. ð28Þ

Obviously, each steady state exists if and only if the
corresponding reproductive ratio is greater than 1.
If �E ¼ ð �T ; �T

�

Es; �T
�

s ; �V s; �T
�

Er; �T
�

r ; �VrÞ denotes a coexistence
steady state (i.e., �V sa0 and �V ra0, hence both strains are
present), then �T satisfies �T ¼ l

d
1
Rs
¼ l

d
1
Rr
. Therefore, �E exists

only if Rr ¼ Rs.
The Jacobian matrix at ~Es is

J ¼
G �

0 H

� �
,

where

G ¼

�ds � ks
~V s bs 0 �ks

~Ts

ks
~V s �ðbs þ fs þ dEsÞ 0 ks

~Ts

0 fs �ds 0

0 0 ps �cs

0
BBBB@

1
CCCCA,

(29)

H ¼

�ðbr þ fr þ dErÞ 0 kr
~Ts

fr �dr 0

0 pr �cr

0
B@

1
CA (30)

and ‘‘�’’ denotes a 4� 3 matrix that does not affect the
proof. Notice that the characteristic equation of G is
exactly the same equation (20) with the subscript s added.
From Appendix A and Rs41, all eigenvalues of G have
negative real parts. Thus, the stability of ~Es is completely
determined by the eigenvalues of H.
Suppose z is an eigenvalue of H, then z satisfies

½zþ ðbr þ fr þ dErÞ�ðzþ drÞðzþ crÞ ¼ krprfr
~Ts. (31)

If we define

R�r ¼
krprfr

~Ts

ðbr þ fr þ dErÞcrdr

, (32)

then (31) can be rewritten as

½zþ ðbr þ fr þ dErÞ�ðzþ drÞðzþ crÞ

¼ R�r ðbr þ fr þ dErÞcrdr. ð33Þ

We remark that R�r represents the effective reproductive
ratio for the drug-resistant strain (i.e., the reproductive
ratio when the sensitive strain is at its infected steady state).
If R�r41, then the resistant strain will be able to invade the
established wild-type strain.
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Using the same arguments as in Appendix A, we have
that ~Es is l.a.s. if R

�
ro1 and it is unstable if R�r41. Notice

from (28) and (4) that

~Ts ¼
l
d

1

Rs

.

Substituting this for ~Ts in (32) and using (4), we obtain

R�r ¼
Rr

Rs

.

Thus, R�r41 if and only if Rr4Rs and R�ro1 if and only if
RroRs. It follows that ~Es is l.a.s. if RroRs, and it is
unstable if Rr4Rs.

From the mathematical symmetry of the two strains we
can use the same arguments for the stability analysis of ~Er,
and show that ~Er is l.a.s. if Rr4Rs and unstable if RroRs.

Appendix C. Proof of Proposition 1

(i) We want to find f�r that maximizes F 1ðfrÞ (see Eq. (7)).
Let

f 1ðfrÞ ¼ frð1� �RTIsRTI ðfrÞÞ. (34)

Then F1ðfrÞ is maximized if and only if f 1ðfrÞ is
maximized. Notice that (8) holds if and only if f�r is a
critical point of f 1 on ð0;fsÞ. Since �RTIsRTI ðf

�
r Þo1, we

have

f 001ðf
�
r Þ ¼ � 2�RTIs0RTI ðf

�
r Þ � �RTIf

�
rs
00
RTI ðf

�
r Þ

¼ �
2ð1� �RTIsRTI ðf

�
r ÞÞ

f�r
� �RTIf

�
rs
00
RTI ðf

�
r Þ

o� �RTIf
�
rs
00
RTI ðf

�
r Þ.

Hence, f 001ðf
�
r Þo0 if s00RTI ðf

�
r ÞX0. It follows that f 1, and

hence Rr, assumes its maximum at f�r if (8) and (9) hold.
(ii) If p�r satisfies (10) then we can easily verify that p�r is a

critical point of F2ðprÞ; i.e., F 02ðp
�
r Þ ¼ 0. The second

derivative of F 2ðprÞ at p�r is

F 002ðp
�
r Þ ¼
½�2�PIs0PI ðp

�
r Þ � �PI p�rs

00
PI ðp

�
r Þ�drðp

�
r Þ � p�r ½1� �PIsPI ðp

�
r Þ�d
00
r ðp
�
r Þ

d2r ðp�r Þ
.

(35)

It is easy to verify that F 002ðp
�
r Þo0 if s00PI ðp

�
r Þ and d00r ðp

�
r Þ are

both nonnegative, which implies that F 2ðprÞ has a
maximum at p�r . Therefore, Rr is maximized at pr ¼ p�r .
This finishes the proof of Proposition 1.

Appendix D. Proof of Result 3

We prove this result using the specific functional forms
for sRTI ðfrÞ, sPI ðprÞ, and drðprÞ given by (12) (in the case of
a ¼ 1) and (13).

(i) The invasion condition (15) is equivalent to (see (16)
and (17))

F1ðfrÞF2ðprÞ4F 1ðfsÞF 2ðpsÞ. (36)

From the analysis in Section 3.1, we know that for a low
level of drug efficacy �RTI (e.g., 0o�RTIo1=2 when a ¼ 1,

see Result 1), the maximum of F1ðfrÞ can only occur at
f�r ¼ fs. Thus, F 1ðfrÞoF1ðfsÞ for frofs. Similarly, from
Result 2 we know that the maximum of F 2ðprÞ can only
occur at p�r ¼ ps if 0o�PIo~�PI , where ~�PI ¼ 1� ds

2m
. Thus,

F2ðprÞoF2ðpsÞ for props. Therefore, the invasion condi-
tion (36) does not hold for any drug efficacies with
0o�RTIo1=2 and 0o�PIo1� ds

2m
.

(ii) When 1=2o�RTIo1, solving the inequality
F1ðfrÞ4F1ðfsÞ for fr, we have

fr 1�
fr

fs

�RTI

� �

bþ fr 1�
fr

fs

�RTI

� �
þ dE

4
fsð1� �RTI Þ

bþ fsð1� �RTI Þ þ dE

,

which is equivalent to

frð1� �RTIfr=fsÞ4fsð1� �RTI Þ,

or

�RTIf
2
r � fsfr þ f2

s ð1� �RTI Þo0.

From the above inequality (and noticing that �RTI41=2),
we have

1

�RTI

� 1

� �
fsofrofs. (37)

When ~�PIo�PIo1, solving the inequality F2ðprÞ4F 2ðpsÞ

for pr gives

pr 1�
pr

ps

�PI

� �

b
2

pr

ps

� �2

þm

4
psð1� �PI Þ

ds

,

which can be rewritten as

½2ds�PI þ bð1� �PI Þ�p
2
r � 2dspspr þ 2mð1� �PI Þp

2
so0.

Noticing that b ¼ 2ðds �mÞ, we can solve the above
inequality and obtain

mð1� �PI Þ

ds �mð1� �PI Þ
psoprops. (38)

Since �PI4~�PI ¼ 1� ds

2m
, which guarantees that

mð1� �PI Þ

ds �mð1� �PI Þ
o1,

we know that (38) defines an interval on which
F2ðprÞ4F 2ðpsÞ. Therefore, for ðfr; prÞ in the regions defined
by (37) and (38) the invasion condition (36), or equivalently
(15), holds.
This finishes the proof of Result 3.
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