
Schistosomiasis models with density dependence and age
of infection in snail dynamics

Zhilan Feng *, Cheng-Che Li, Fabio A. Milner

Department of Mathematics, Purdue University, West Lafayette, IN 47907-1395, USA

Received 31 December 2000; received in revised form 6 September 2001; accepted 28 September 2001

Abstract

New models for schistosomiasis are developed. These models incorporate several realistic features in-
cluding drug treatment for human hosts, an infection age in snail hosts, density-dependent birth rate of
snails, distribution of schistosomes within human hosts, and disease-induced mortality in both human and
snail hosts. The qualitative and quantitative mathematical properties of the models are studied, their bio-
logical consequences and some control strategies are discussed, and the results of the new models are
compared with those of simpler models. It is shown that the new model may have a bifurcation at which the
unique endemic equilibrium changes the stability and stable periodic solutions exist. This is quite different
from the simpler models. Explicit thresholds of treatment rate are established above which the infection will
be controlled under certain levels. Evaluations of cost-effectiveness are also discussed by analyzing the
sensitivity of the mean number of parasites per person to changes of other parameters. � 2002 Elsevier
Science Inc. All rights reserved.
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1. Introduction

In modeling our environment one of the most difficult choices we have to make is the amount of
detail we are willing to put into the model or, rather, the amount of detail we are capable of
modeling due to our limited ability to gather information. This decision is especially crucial when
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trying to describe biotic interactions, and it requires a delicate balance between the need for
enough detail to resolve important characteristics of the dynamics of the interactions and our
ability to obtain data in sufficient detail to use the model.

When modeling any ecosystem in some detail, one should begin with a simple model. If this
model captures the essential features of the interactions being modeled, simulations should reflect
those aspects of real-life behavior. Hopefully, a simple model can be thoroughly analyzed and
then built upon to derive increasingly more complex models. At each stage these require the same
type of validation concerning the new features being added and the extent to which the numbers
predicted by the model compare with real data.

Several studies have addressed the dynamics of schistosomiasis and other helminth infection of
humans [1–4,9,10,13–15,18,19,25,26] using systems similar to the one we are interested in. We
shall consider here Schistosoma mansoni, a human blood fluke which causes schistosomiasis. The
freshwater snail Biomphalaria glabrata serves as the main intermediate host. Anderson and May
[1] introduced models for macroparasite–host interactions when the parasites have direct lifecycles
involving only a single host population and one stage of parasites. In [19] a free-living stage of the
parasite was considered in the model. Interactions between schistosome infection and molluscan
intermediate hosts (snails) were studied in [2]. Multiple stages of parasites and two host popu-
lations were considered in [10] which, however, assumes a constant population size of the human
host and no density dependence and age of infection in the snail population. Campaigns against
S. mansoni frequently focus on treatment of infected humans with Praziquantal or other drugs
that kill the parasites in the treated humans. Mathematical models have been used to assess
community chemotherapy programs for schistosomiasis through simulations [6,7]. These models
also do not include explicit snail dynamics.

We shall introduce in this paper models with more features describing the dynamics of
schistosomes, snails, and humans; we shall study their qualitative and quantitative mathemati-
cal properties and deduce biological and ecological consequences. In particular, we shall model
treatment of humans and establish an explicit treatment rate threshold above which parasites
will die out or the infection in the population will remain below a certain level. We shall also
study the sensitivity of the mean parasite load per human host to the changes in the two
transmission rates: the man–snail transmission rate and the snail–man transmission rate. We
shall introduce an age structure in the class of infected snails, since their cercarial production
seems to be periodic in time and there is a prepatent period after initial infection (see Fig. 1,
[21]). The man–schistosome interaction is modeled as a macroparasite infection and we assume a
negative binomial distribution for the parasite distribution among the human hosts as in [1]. The
population sizes of both human and snail hosts are variable by allowing disease-induced mor-
tality.

We shall also compare the prediction of the new models with that of a simpler model pro-
posed earlier by other authors [25,26], to which our model reduces if we assume no parasite-
induced additional mortality in humans as well as constant cercarial production by infected
snails. We shall show that this mean parasite load does not depend linearly on the transmission
rate from snail to human as the simpler model predicts, but rather on the square root of this
transmission rate. We shall also show (numerically) that the new model may produce a bifur-
cation at which the unique endemic equilibrium changes its stability and stable periodic solu-
tions exist.
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2. The model

Let N , P , S, I , M , C denote the numbers of human hosts, adult parasites, uninfected snails and
infected snails, free-living miracidia, and free-living cercariae, respectively. The following pa-
rameters will be used in our model:

Kh recruitment rate of human hosts
bp per capita birth (egg-laying) rate of adult parasites
Ks recruitment rate of snails
lh per capita natural death rate of human hosts
lp per capita death rate of adult parasites
ls per capita natural death rate of snails
a disease-induced death rate of humans per parasite
ds disease-induced death rate of snails
q per capita (successful) rate of infection of snails by one miracidium
b per capita (successful) rate of infection of humans by one cercaria
rðsÞ releasing rate of cercariae by one snail of infection age s
r treatment rate of human hosts

Under the assumption that individuals are born uninfected, and that the parasites are over-
dispersed and have a negative binomial distribution among human hosts with the clumping pa-
rameter k, we have the following equations for the numbers of humans N and adult parasites P:

d

dt
N ¼ Kh � lhN � aP ;

d

dt
P ¼ bCN � ðlh þ lp þ a þ rÞP � a

k þ 1

k

� �
P 2

N

� �
:

ð1Þ

Fig. 1. This graph shows how the number of cercariae released by a snail changes with time since infection. The

prepatent period is about 35 days after initial infection. After that the number fluctuates with a period of about 30 days

until the snail dies.
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The system (1) is very similar to the model studied in [1] which does not include the snail dynamics
and has an exponential birth rate for human hosts. Based on the observation that the parasite
burden in a snail is not essential for the number of cercariae produced, we divide the snail
population into two subclasses: I (infected snails) and S (uninfected snails). Let t denote time, s
denote time since infection, i.e., infection age, xðt; sÞ denote the infection-age density of snails at
time t, and rðsÞ denote the rate at which infected snails of infection age s release cercariae. Then
the total number of infected snails at t is

IðtÞ ¼
Z 1

0

xðt; sÞds: ð2Þ

Since cercariae die very quickly after being released if they cannot find a human host to infect, the
total number of cercariae shed by infected snails of all ages at time t > 0 can be expressed as

CðtÞ ¼
Z 1

0

rðsÞxðt; sÞds: ð3Þ

We assume that the average number of hatchable eggs laid by one adult parasite per unit of time is
constant. Then the equations for the snail hosts with infection-age-dependent infectivity take the
following form:

d

dt
S ¼ bðS; IÞ � lsS � qMS;

o

ot
xðt; sÞ þ o

os
xðt; sÞ ¼ �ðls þ dsÞxðt; sÞ;

xðt; 0Þ ¼ qMS; xð0; sÞ ¼ x0ðsÞ;

ð4Þ

where bðS; IÞ is the birth rate of snails whose form will be specified later, qMS is the incidence rate
of snail infection,M ¼ bpP (since miracidia also die quickly if they cannot find a snail to infect, the
total number of miracidia at time t is assumed to be proportional to the number of adult para-
sites). Combining (1)–(4) we have the following system that governs the disease dynamics:

d

dt
N ¼ Kh � lhN � aP ;

d

dt
P ¼ bCN � ðlh þ lp þ a þ rÞP � a

k þ 1

k

� �
P 2

N

� �
;

d

dt
S ¼ bðS; IÞ � lsS � qMS;

o

ot
xðt; sÞ þ o

os
xðt; sÞ ¼ �ðls þ dsÞxðt; sÞ;

xðt; 0Þ ¼ qMS; xð0; sÞ ¼ x0ðsÞ;

CðtÞ ¼
Z 1

0

rðsÞxðt; sÞds; IðtÞ ¼
Z 1

0

xðt; sÞds; M ¼ bpP :

ð5Þ

The existence and uniqueness of solutions to the system (5) can be proved using standard
methods (see [17,24]). Moreover, it is easy to show that all the variables remain non-negative and
bounded for t > 0 for non-negative initial data.
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Let

BðtÞ ¼ qMðtÞSðtÞ ¼ qbpP ðtÞSðtÞ:
Then, solving the x equation along the characteristics lines t � s ¼ const, we get

xðt; sÞ ¼ e�ðlsþdsÞsBðt � sÞ; if tP s;
e�ðlsþdsÞtx0ðs � tÞ; if t < s:

�
Then we can rewrite CðtÞ and IðtÞ as

CðtÞ ¼
R t
0
rðsÞe�ðlsþdsÞsBðt � sÞds þ F1ðtÞ;

IðtÞ ¼
R t
0
e�ðlsþdsÞsBðt � sÞds þ F2ðtÞ;

where

F1ðtÞ ¼
R1
t rðsÞe�ðlsþdsÞsx0ðs � tÞds;

F2ðtÞ ¼
R1
t e�ðlsþdsÞsx0ðs � tÞds:

Introduce the notation

d ¼ lh þ lp þ a þ r; n ¼ qbp; k0 ¼
k þ 1

k
: ð6Þ

Then the equations in system (5) can be written as

d

dt
N ¼ Kh � lhN � aP ;

d

dt
P ¼ bN

Z t

0

rðsÞe�ðlsþdsÞsBðt � sÞds � dP � ak0
P 2

N
þ bNF1ðtÞ;

d

dt
S ¼ bðS; IÞ � lsS � BðtÞ;

BðtÞ ¼ nP ðtÞSðtÞ

ð7Þ

and

IðtÞ ¼
Z t

0

e�ðlsþdsÞsBðt � sÞds þ F2ðtÞ: ð8Þ

In the following sections we will consider two particular forms of bðS; IÞ: b1ðS; IÞ ¼ Ks and
b2ðS; IÞ ¼ c1S=ðc2 þ S þ IÞ, with c1 and c2 being the scaling and saturation constants of the birth
rate. b1ðS; IÞ represents a constant recruitment and b2ðS; IÞ takes into account the fact that in-
fected snails do not reproduce.

3. The basic reproductive number and disease dynamics

In this section we describe most of our analytic results for the case when the snail birth rate is
b1ðS; IÞ ¼ Ks. The case of b ¼ b2ðS; IÞ is discussed at the end of this section. Let

K1 ¼ b
Z 1

0

rðsÞe�ðlsþdsÞs ds; ð9Þ
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and let

RMS ¼
Ks

ls

� �
n
d

� �
; RSM ¼ Kh

lh

� �
K1:

RMS represents the man–snail transmission coefficient (the number of snails infected by a schis-
tosome during its average lifetime, 1=d). RSM represents the snail–man transmission coefficient
(the number of schistosomes produced by an infected snail during its entire period of infection).
The basic reproductive number is

R0 ¼ RMSRSM: ð10Þ
It is sufficient to study the system (7) which has only three variables: N , P , and S (the large time

behavior of IðtÞ is given by that of BðtÞ ¼ nPðtÞSðtÞ). The parasite-free equilibrium E0 ¼ ðN0;
P0; S0Þ ¼ ðKh=lh; 0;Ks=lsÞ always exists, and its stability determines whether the parasites will be
able to establish themselves in the population. The following result shows that the parasites will
go to extinction if R0 6 1.

Result 1. Consider the system (7) with b ¼ b1ðS; IÞ. IfR0 6 1, then the parasite-free equilibrium E0 is
a global attractor, i.e.,

lim
t!1

NðtÞ; P ðtÞ; SðtÞð Þ ¼ Kh

lh

; 0;
Ks

ls

� �

for any positive solutions of the system (7).

Result 1 can be proved in a similar way as in [11], using methods shown in [22]. We can also
show that E0 is unstable when R0 > 1 and that at the same time there exists an endemic equi-
librium E� ¼ ðN�; P�; S�Þ with P� > 0. We will look at the limiting system of (7):

d

dt
N ¼ Kh � lhN � aP ;

d

dt
P ¼ NðK1 � BÞ � dP � ak0

P 2

N
;

d

dt
S ¼ b1ðS; IÞ � lsS � B;

B ¼ nPS;

ð11Þ

where ‘�’ denotes convolution and

K1ðsÞ ¼ brðsÞe�ðlsþdsÞs: ð12Þ

The linearization of system (11) at the point E0 has the following characteristic equation,

ðk þ lhÞðk þ lsÞ k
�

þ d � nN0S0 bKK1ðkÞ
�
¼ 0; ð13Þ

where f̂f ðkÞ denotes the Laplace transform of f ðhÞ, i.e.,
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f̂f ðkÞ ¼
Z 1

0

e�khf ðhÞdh:

It can be shown that Eq. (13) has a positive real root when R0 > 1. Hence E0 is unstable.
Setting the right-hand side of (11) equal to 0 we know that E� is a positive equilibrium if and

only if N� is a positive solution of the equation hðN�Þ ¼ gðN�Þ where

hðN�Þ ¼ nK1KsN�;

gðN�Þ ¼ d

�
þ k0ðKh � lhN�Þ

N�

�
ls

�
þ nðKh � lhN�Þ

a

�
:

ð14Þ

It can be shown that hðN�Þ ¼ gðN�Þ has a solution on ð0;Kh=lhÞ if and only if hðKh=lhÞ >
gðKh=lhÞ, which is equivalent to R0 > 1. Moreover, N� is unique. The following result has been
established.

Result 2. If R0 > 1, b ¼ b1ðS; IÞ ¼ Ks, then the parasite-free equilibrium E0 is unstable. At the same
time, there exists a unique endemic equilibrium E� ¼ ðN�; P�; S�Þ with P� > 0.

We remark that the uniqueness of the endemic equilibrium may not be true if different re-
cruitment rates of human hosts are assumed. For example, if we assume an exponential growth of
humans, as done in [1], then there may be several feasible endemic equilibria. This provides ev-
idence that introduction of snail dynamics may generate qualitatively different model behaviors.
We do not discuss these cases further here since our main concern in this paper is the impact of
density dependence and infection age of snails.

The stability of E� is somewhat difficult to prove due to the fact that the corresponding
characteristic equation contains both the Laplace transform bKK1ðsÞ and a polynomial of degree 3
(see Appendix A). We have managed to prove the following stability result under the assumption
that the extra human mortality rate a induced by one adult parasite is much smaller than other
parameters, which is true for schistosomiasis.

Result 3. E� is locally asymptotically stable if a is small enough.

The proof of Result 3 can be found in Appendix A. Results 1, 2, and 3 are all for the case
of b ¼ b1ðS; IÞ. For the case of b ¼ b2ðS; IÞ, we show that, while the result on existence and
uniqueness of the endemic equilibrium is similar, the stability result is quite different.

In this case, the reproductive number is R0
0 ¼ R0

MSR
0
SM, where

R0
MS ¼

n
d

� �
S; R0

SM ¼ Kh

lh

� �
K1;

and S ¼ c1=ls � c2 > 0 is the carrying capacity of the snails in the absence of parasites. Similarly
to Result 1, we can prove that the parasite-free equilibrium is stable when R0

0 < 1 and unstable
when R0

0 > 1.
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For the system (11) with b ¼ b2ðS; IÞ, the existence of uniqueness of the endemic equilibrium is
determined by that of a positive N in the following equation,

ls þ
nðKh � lhNÞ

a
� c1
c2 þLðNÞ ¼ 0; ð15Þ

where

LðNÞ ¼ 1

nK1N
d

�
þ k0

Kh

N

�
� lh

��
1

�
þ nðKh � lhNÞ

aðls þ dsÞ

�
:

It can be shown that (15) has a unique root N � satisfying 0 < N � < Kh=lh if and only if R0
0 > 1.

Hence, for R0
0 > 1, the system (11) with b ¼ b2ðS; IÞ has a unique endemic equilibrium E� ¼

ðN �; P �; S�Þ with N � given by (15) and

P � ¼ 1

a
ðKh � lhN

�Þ; S� ¼ 1

nK1N � d

�
þ k0

Kh

N �

�
� lh

��
:

As for the stability of E�, we have conducted a large number of numerical calculations which
show that E� is stable only for parameters in a certain region, and that there exists a bifurcation at
which E� becomes unstable and periodic solutions appear (see Fig. 2).

In Fig. 2 we have fixed all parameters except c1 and c2. The parameter values are chosen to
be the following: Kh ¼ 6, lh ¼ 0:014, a ¼ 10�6, b ¼ 0:0001, lp ¼ 0:2, r ¼ 0:5, k ¼ 0:1, ls ¼ 0:3,

Fig. 2. Plots of the number of adult parasites P vs time for various values of c1 and c2. c2 ¼ 400 is fixed. They show that

the stability of the endemic equilibrium changes from stable (c1 ¼ 600) to unstable (c1 ¼ 800) and at the same time, a

stable periodic solution appears.
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q ¼ 0:0005, bp ¼ 4, ds ¼ 0:01. The time units are years. The values for b and q are small because
they contain many factors involved in the transmission process including the probability of
successful contact of a parasite with a host. According to the data shown in Fig. 1, we choose rðsÞ
to be periodic of period eight weeks, zero for 06 s6 4 weeks, and having a maximum support of
two years. To simplify the numerical calculations, it is also chosen to be piecewise linear. Fig. 2
presents the behavior of solutions of the system (5) with b ¼ b2ðS; IÞ for three sets of values of c1
and c2 (only the P component is shown). In all three graphs c2 ¼ 400. The top graph shows that
for c1 ¼ 600 the endemic equilibrium E� is stable. The middle graph shows that for c1 ¼ 800 E�

becomes unstable and a stable periodic solution exists. This indicates that a bifurcation occurs at
some critical point c�2 2 ð600; 800Þ, such that E� is stable for c2 < c�2 and unstable for c2 > c�2. The
bottom graph shows that, when further increasing c2, a stable periodic solution exists with a larger
amplitude. This phenomenon looks very much like a Hopf bifurcation, but we do not have an
analytic proof for this.

The change of stability of the endemic equilibrium as well as the periodicity exhibited in our
model demonstrate to some extent the impact of snail dynamics on the disease transmission
processes. Epidemiological evidence suggests that variation in schistosome prevalence and in-
tensity occurs in time [12]. Human activity is often the source of changes in transmission patterns,
but variation in rainfall can have a considerable effect on intermediate hosts. Variation between
years in the pattern of rainfall has been shown to be associated with significant variation in the
incidence of infection in a community in The Gambia (see [12]). Other studies have shown sea-
sonal periodicity of prevalence of schistosome infections in snail populations [20,23]. Since our
model does not incorporate seasonal variations, our study here indicates that the infertility of
infected snails (incorporated in our model with b ¼ b2ðS; IÞ) seems to play an important role in
generating variations in time. The phenomenon that infertility of infected hosts can produce
periodicity has also been observed in other models (see [9]). Note that the periodicity of the
function rðsÞ does not seem to be responsible for the oscillation of solutions since no oscillations
are present in the model with the same rðsÞ but b ¼ b1ðS; IÞ. Another observation concerns the
role of parasite-induced host mortality. Some studies show that introducing the host mortality
may alter the behavior of the models when combined with overdispersed distributions of parasites
(see [16]). Our analysis indicates that, in the absence of density dependence and age of infection of
snails, the additional (small) human mortality does not change the qualitative behavior of our
model while the quantitative behaviors may be different (see Sections 4 and 5).

4. Comparison to models without snail dynamics

Various methods of schistosome control are discussed in [25,26] using mathematical models.
The basic model used in these papers is an ODE system of two equations (the notations have been
changed for convenience of comparison):

dm
dt

¼ b0Vy � l0
pm;

dy
dt

¼ n0Nmð1� yÞ � l0
sy;

ð16Þ
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where m denotes the mean numbers of schistosomes per human host; y denotes the proportion of
patent infections of snails; V and N denote the number of snails and humans, respectively; l0

p and
l0
s are the per capita death rate for schistosomes and infected snails, respectively; and b0 and n0 are

the per capita rate of infection of humans and snails, respectively. From these models Woolhouse
identifies two quantities: TSM ¼ b0V =l0

p and TMS ¼ n0N=l0
s, which have similar meanings to our

quantities RSM and RMS, respectively. He finds that at the endemic equilibrium the mean number
m� of schistosomes per human host has the expression

m� ¼ TSM � 1

TMS

¼ b0V
l0
p

� l0
s

n0N
: ð17Þ

This relation shows that m� is linearly related to TSM (or equivalently to b0) and is inversely related
to TMS (or equivalently to n0).

Several complications affecting the transmission coefficients are neglected in this model (16),
among which are the duration of the prepatent period in snails, the changes in the numbers and
distribution of schistosomes in human hosts, and the additional host mortality rate due to in-
fection.

Our new model incorporates all the factors mentioned above and includes the model (16) as a
special case. This can be shown as follows. Consider the special case of our model (5) in which
a ¼ 0 and ds ¼ 0 (ignoring the infection-induced host mortality) and rðsÞ ¼ �rr is constant (the
cercaria-releasing rate of the snails is independent of the infection age). Note that in this case the
N equation becomes dN=dt ¼ Kh � lhN , and that NðtÞ ! Kh=lh, as t ! 1. Using the theory of
asymptotically autonomous systems (see [5]) we can assume a constant size of human hosts:
NðtÞ ¼ N ¼ Kh=lh. By integrating the x equation in (5) and using the initial condition xðt; 0Þ ¼
nPS we get the equation for I, the number of infected snails:

dI
dt

¼ nPS � lsI: ð18Þ

The total number V ¼ S þ I of snails then satisfies the equation dV =dt ¼ Ks � lsV . Hence V ðtÞ !
Ks=ls, as t ! 1, and we can assume a constant size of snail hosts: V ðtÞ ¼ V ¼ Ks=ls. Denote
m ¼ P=N and y ¼ I=V . Dividing the P equation in (5) by N and dividing the I Eq. (18) by V we
get

dm
dt

¼ b�rrV y � ðlh þ lp þ rÞm;

dy
dt

¼ nNmð1� yÞ � lsy;

which is exactly the same system as (16) with N ¼ N , V ¼ V , b0 ¼ b�rr, l0
p ¼ lh þ lp þ r, n0 ¼ n,

l0
s ¼ ls.
A natural question is whether or not our models which incorporate more observed features of

the disease generate different dynamics and predictions. The answer is yes. First, we look at the
dependence of the mean parasite load m� (at the endemic equilibrium) on the transmission rates n
andK1 (or b). Here we only present the case of b ¼ b1ðS; IÞ. From the first equation in (11) we see
that, for a > 0, m� ¼ P �=N � ¼ ð1=aÞðKhx� � lhÞ with x� ¼ 1=N �. Using the equations in (14) we
get the unique biologically feasible solution
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x� ¼ �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
; ð19Þ

where

a ¼ Khk0ðlsa þ nKhÞ;
b ¼ alsðd � lhk0Þ þ ðd � 2lhk0ÞnKh;

c ¼ �nlhðd � lhk0Þ � anKsK1:

ð20Þ

It is clear that x� (and hence m�) depends on the transmission coefficients n and K1 in a highly
non-linear way. For example, m� depends on the square root of n. This is very different from the
prediction by the simpler model (16) (see (17)). The formulas (19) and (20) also allow us to study
how m� is affected by the heterogeneity in parasite load within human hosts. This is because a, b,
and c (hence x� and m�) are all dependent on k0 ¼ ðk þ 1=kÞ, where k is the clumping parameter in
the negative binomial distribution. Another important feature of our model formulation is that
we can use our knowledge of k and m� (which determine the negative binomial distribution) to
compute the prevalence of morbidity, Q, which is defined as the proportion of individuals whose
parasite load exceeds a threshold value. The value of Q provides an important measure of the level
of schistosome infection in a human population (see [8]). We will discuss this in more detail in a
separate paper.

The qualitative behavior of the more complex model in this paper is also much richer than that
of (16). For example, when the recruitment rate of snails is described by b2ðS; IÞ, the numerical
studies of our model show that a bifurcation occurs for some critical values of the parameters, in
which case the endemic equilibrium loses its stability and periodic solutions exist (see Fig. 2). This
type of dynamics is not present in the simpler model (16), for which the endemic equilibrium is
always stable when it exists.

Another similar and simpler model is considered in [1] which involves only human hosts and
assumes exponential growth for humans. The equations in [1] have the form of the system (1) with
C replaced by (P=N0 þ N ) and Kh replaced by bhN , where N0 and bh are constants. That model
also produces no stable periodic solutions (it has a neutrally stable cycle for some parameter
values).

5. Control strategies

Result 1 in Section 3 provides a condition, R0 < 1, for the eradication of the disease. We will
consider three parameters that seem to be more important in the reduction of R0: the man–snail
transmission parameter n, the snail–man transmission parameter bðor K1Þ, and the treatment
rate r. Theoretically, we can rewrite the condition R0 < 1 in terms of one or more of the three
parameters. For example, we can establish an explicit treatment rate threshold rc above which
R0 < 1:

rc ¼ lh þ lp þ a þ nK1KhKs

lhls

: ð21Þ
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If the transmission rates are very high such that it is difficult to achieve r > rc, then one may
consider changing more than one parameter at the same time. Even when it is impossible to
eradicate the disease, a control strategy may focus on the reduction of the level of infection. One
of the measures for the level of infection is the mean parasite load m�. We will explore several
interesting options on control.

Consider control strategies concerning one or more of the three parameters r, n, and b. The
reduction in n may be achieved through education to change excretory behavior that reduces the
successful infection rate of snails (a factor included in q). The reduction in b may be achieved by
improving water supply systems which reduce contact rate of human hosts with polluted water.
Fig. 3 demonstrates the sensitivity of m� to the changes of these parameters. For the purpose of
illustration, the values for n and b in Figs. 3 and 4 have been scaled by 10�4. Other parameter
values for Figs. 3 and 4 are chosen to be Kh ¼ 50, lh ¼ 0:014, a ¼ 10�6, lp ¼ 0:2, k ¼ 0:1,
Ks ¼ 200, ls ¼ 0:3, ds ¼ 0:01, and

R1
0

rðsÞe�ðlsþdsÞs ds ¼ 90. These figures are produced by
Mathematica.

The top graph in Fig. 3 is a plot of m� vs n and b for r ¼ 0 (no treatment). In this case m� is
related linearly to b but non-linearly to n. This graph provides a prediction similar to that given in
[26]: for fixed n, m� decreases linearly with decreasing b; and for fixed b, a reduction by one-half in
the value of n may reduce m� by less than one-half if m� is high, but by more than one-half if m�

is low.

Fig. 3. The graphs demonstrate the sensitivity of the mean parasite load m� to the changes of the transmission pa-

rameters, b and n, and the treatment rate r. The top graph is a plot of m� vs b and n when there is no treatment (r ¼ 0).

In this case m� is related linearly to b but non-linearly to n. The bottom graph is a plot of m� vs r and n for a fixed value

of b. It show that m� is related non-linearly to both r and n.
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The bottom graph in Fig. 3 is a plot of m� vs r and n for a fixed value of b ¼ 5. We see that m� is
related non-linearly to both r and n. The graph also suggests that, for fixed n, say n ¼ 1, a
treatment rate of r ¼ 0:3 produces a considerable reduction in m�, but an additional reduction
produced by a treatment rate of r ¼ 0:6 may not justify the additional expense.

In Fig. 4 we consider the situation in which the man–snail transmission rate n is unchanged, but
the snail–man transmission rate b and the treatment rate r are varied.

The top graph in Fig. 4 is a plot of the meanm� vs b and r for a fixed value of n ¼ 1. It shows that
m� is related linearly to b but non-linearly to r. It also provides a similar evaluation of cost-effec-
tiveness as in Fig. 3. The bottom graph in Fig. 4 is a contour plot showing the regions in the ðr;bÞ
plane for which m� falls in different intervals. From this graph we can determine the specific treat-
ment rate above which the mean parasite load m� will be controlled below a certain level. For ex-
ample, for b ¼ 6, we need r > 0:185 in order to havem� < 2 and we need r > 0:425 to havem� < 1.

6. Conclusions

The mathematical analysis of the new model (5) in this paper establishes some epidemiological
consequences of schistosome distribution among human hosts, density-dependent snail growth

Fig. 4. The graphs show the sensitivity of m� to b and r while man–snail transmission rate n is unchanged. The top

graph is a plot of m� vs b and r for a fixed value of n. It shows that m� is related linearly to b but non-linearly to r. The
bottom graph is a contour plot showing the regions in the ðr; bÞ plane for which m� falls in different intervals.
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due to the infertility of infected snails, and age-dependent cercarial production of snails. The main
contributions of the present study are (a) to generalize the existing simpler models to incorporate
more realistic features and to provide a nearly complete qualitative analysis for the complex
models and (b) to explore quantitatively several control strategies and to evaluate cost-effec-
tiveness of drug treatment programs.

It is shown in this paper that the new model with b ¼ b2ðS; IÞ (which takes into account that
infected snails do not reproduce) exhibits more complex dynamics including the switch of stability
of the unique endemic equilibrium and the existence of stable periodic solutions. The stability
result for b ¼ b1ðS; IÞ is very similar to that of the simpler model (16), i.e, the endemic equilibrium
is always stable whenever it exists. This indicates that the infertility of infected snails may provide
a mechanism for observed periodic occurrence of the disease in some natural populations. This
finding is also consistent with earlier results from other models (see [9]).

The sensitivity analysis in Section 5 illustrates the effects of various combined changes in the
values of n, b, and r on the reduction of the endemic levels of infection, m�. It shows that reducing
n may be more effective when m� is low, but reducing b may be a better strategy when m� is high.
We can compute threshold values of the treatment rate r above which m� will stay below a given
level. We also find that, for a range of treatment rates r, the infection level can be reduced sig-
nificantly, and that the expense for higher treatment rates may not be justified. The clumping
parameter k of the negative binomial distribution is only briefly discussed in this paper. It may
play an important role in determining the levels of infection if a different measure (Q) for the
disease prevalence is considered.

Many other refinements to the models can be made, among which are: reservoir hosts, host
migration, seasonal heterogeneity, age-dependent human infection rate, acquired immunity, and
stochastic effects. Some of these are considered and discussed in [25]. We have looked at models
involving reservoir hosts and host migration, which will be published elsewhere.
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Appendix A

To prove the stability of E� we look at the characteristic equation of (11) at E�:

det
k þ lh a 0
�C� k þ d þD� �nN�P� bKK1ðkÞ
0 nS� k þ ls þ nP�

0
@

1
A ¼ 0; ðA:1Þ

where

C� ¼ K1B� þ ak0
P 2
�

N 2
�
;

D� ¼ 2ak0
P�
N�

� nN�S� bKK1ðkÞ:
ðA:2Þ
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Denote the left-hand side of the characteristic equation by GðkÞ. Then

GðkÞ ¼ ðk þ lhÞ ðk
h

þ d þD�Þðk þ ls þ nP�Þ þ n2N�P�S� bKK1ðkÞ
i
þ aC�ðk þ ls þ nP�Þ: ðA:3Þ

Note that a is the death rate of human hosts caused by one parasite per unit time. It is much
smaller than all other parameters. From (14) we realize that N� is an analytic function of a > 0
and

N� ¼
Kh

lh

� lsð eRR0 � 1Þ
lhn

a þOða2Þ; ðA:4Þ

where eRR0 ¼ R0 evaluated at a ¼ 0. Since a is small it is likely that eRR0 > 1 whenR0 > 1. Using the
equations on the right-hand side of (11) we can get

P� ¼
lsð eRR0 � 1Þ

n
þOðaÞ; S� ¼

1eRR0

� �
Ks

ls

� �
þOðaÞ: ðA:5Þ

Rewrite the function G as

GðkÞ ¼ ðk þ lhÞ k

��
þ d þ 2ak0

P�
N�

�
ðk þ ls þ nP�Þ � nN�S�ðk þ lsÞbKK1ðkÞ

�
þ aC�ðk þ ls þ nP�Þ: ðA:6Þ

Then in the limiting case, a ¼ 0, the characteristic equation GðkÞ ¼ 0 has a negative root �lh and
other roots given by

ðk þ ~ddÞðk þ ls þ nePP�Þ
k þ ls

¼ neNN�eSS� bKK1ðkÞ; ðA:7Þ

where ~xx ¼ x evaluated at a ¼ 0. Note that eNN� ¼ N0, eSS� ¼ S0= eRR0, and that when Rk P 0 we have
jbKK1ðkÞj6 jbKK1ð0Þj ð¼ K1Þ. Hence,

jneNN�eSS� bKK1ðkÞj6
nN0S0K1eRR0

¼ ~dd if RkP 0:

On the other hand, since P� > 0 we have

ðk þ ~ddÞðk þ ls þ nePP�Þ
k þ ls

�����
����� > jk þ ~ddjP ~dd if Rk P 0:

This shows that (A.7) cannot have roots with positive real part for a ¼ 0. It follows that E� is
stable when a > 0 is small.
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