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ABSTRACT. We introduce a metapopulation model that
includes both landscape changes (patch destruction and recre-
ation) and age-dependent metapopulation dynamics. A thresh-
old quantity is derived and related to the existence of an eco-
logically nontrivial equilibrium, to the stability of the species-
free equilibrium, and to weak and strong persistence of the
species. We provide examples to illustrate how age-related
changes in patch colonization and extinction rates can alter
metapopulation persistence. Future field studies may need to
address the temporal dynamics that characterize local popu-
lations in fragmented landscapes.

KEY WORDS: Differential equations, colonization, extinc-
tion, patch destruction, persistence thresholds, mathematical
models.

1. Introduction. Natural disturbances occur with varying lev-
els of frequency and severity across a landscape. Destruction and
fragmentation of native habitats are widespread and viewed as the
most important threats to biodiversity worldwide (Wilcox and Mur-
phy [1985]). In landscapes where habitat fragmentation is prevalent,
the metapopulation paradigm provides a useful model for assessing vi-
ability of many species. Within these landscapes, critical thresholds
derived from metapopulation models become useful for conservation
by highlighting key factors that dictate a species’ ability to survive.
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The classic metapopulation model (Levins [1969]) emphasizes changes
in patch occupancy as a function of rates of patch colonization. Within
this metapopulation framework, two structures have emerged as being
critical in the study of species’ persistence within patchy landscapes.
The important role of spatial structure, i.e., heterogeneity, has been
supported by many studies (Durrett and Levin [1994], With and Crist
[1995], Bascompte and Sole [1996], Bevers and Flather [1999], Hanski
[1998]). These papers have concluded that several spatial features such
as connectivity of the patches, patch size and the assumption of local
dispersal are essential to understanding the dynamics of a population.
In addition to the spatial structure of the landscape, recent research
has also focused on the effects of the temporal features of the landscape
(Merriam et al. [1991], Fahrig [1992], Brachet et al. [1999], Keymer et
al. [2000]). The general consensus is that temporal components interact
with the spatial components to determine metapopulation persistence
(Keymer et al. [2000]). Since most landscapes are indeed dynamic in
nature, especially in areas dominated by humans, the role of patch
dynamics should be considered carefully. Keymer et al. [2000] studied
an ordinary differential equation model that incorporates changes in the
configuration of habitable patches in the landscape. Metapopulation
persistence was estimated as a function of rate of habitat destruction.

Existing models of dynamic landscapes emphasize destruction fol-
lowed by instantaneous restoration of patches. In many systems,
though, vital rates may be linked to the elapsed time since a patch
was restored, i.e., age of a patch. In this context, age structure of
patches may influence metapopulation dynamics. Assume that emi-
gration is related to resource availability and that resources are more
plentiful on a per capita basis following initial occupancy of a patch.
Further, assume that, as the population grows, emigration increases,
i.e., emigration is density dependent, rather than density independent
as in current formulations. Then newly occupied patches will be charac-
terized by lower emigration rates and higher extinction rates. Extinc-
tion rates should initially be high because demographic stochasticity
will have greater effects on the small number of initial colonists. As
population size approaches the carrying capacity of the patch, extinc-
tion rates should approach a constant. Thus, age structure of patches
should be considered when studying the impact of age-dependent rates
of extinction and emigration on metapopulation dynamics. In this
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article we generalize the model in Keymer et al. [2000] by incorporat-
ing age-dependent colonization and extinction rates. The introduction
of these types of age distributions into the model may provide more
realistic predictions for conservation purposes, see Feng and Thieme
[2000a, b], Feng et al. [2002b]. We identify a threshold quantity Rd

(d for destruction) and show that the existence of the nontrivial equi-
librium is linked to Rd being larger than 1. We derive a charac-
teristic equation, the roots of which determine the local stability of
the metapopulation-extinction and -persistence equilibria. We show
that the metapopulation-extinction equilibrium is locally asymptoti-
cally stable if Rd < 1 and unstable if Rd > 1, and that metapopulation-
persistence is expected if and only if Rd > 1. Computation of Rd, in
this article, helps understand the role that age-related parameters play
in the maintenance of metapopulations.

2. The model formulation. Keymer et al. [2000] developed
the following model (the notations have been changed for comparison
purposes):

(1)

d

dt
X(t) = δ(Y (t) + Z(t)) − γX(t),

d

dt
Y (t) = γX(t) − cY (t)Z(t) + εZ(t) − δY (t),

d

dt
Z(t) = cZ(t)Y (t) − (ε + δ)Z(t).

Here X(t), Y (t) and Z(t) denote the fractions of patches that are
nonhabitable, habitable but unoccupied and occupied, respectively, at
time t; δ is the patch destruction rate for the habitable patches; γ is the
patch recreation rate for the destroyed patches; c and ε are the rates
of colonization and extinction, respectively. We generalize the model
(1) by incorporating age-dependent colonization and extinction rates
as follows. Introduce the following notation: z(a, t) is occupancy-age
density of fraction of occupied patches at time t, c(a) is per capita
colonization rate by patches of age a and ε(a) is per capita extinction
rate of patches of age a. Here the variable a denotes the age of
occupancy of a patch, i.e., the time that has lapsed since the patch
became colonized. In this context, then,

∫ a2

a1
z(a, t) da is simply the

fraction of patches between ages a1 and a2. Throughout this paper
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we assume that both c(a) and ε(a) are bounded functions. Then the
dynamical changes of the metapopulation are governed by the following
system of differential and integral equations:

(2)

d

dt
X(t) = δ

(
Y (t) +

∫ ∞

0

z(a, t) da

)
− γX(t),

d

dt
Y (t) = γX(t) − δY (t) − Y (t)

∫ ∞

0

c(a)z(a, t) da

+
∫ ∞

0

ε(a)z(a, t) da,

∂

∂t
z(a, t) +

∂

∂a
z(a, t) = −(δ + ε(a))z(a, t),

z(0, t) = Y (t)
∫ ∞

0

c(a)z(a, t) da, X(0) = X0 > 0,

Y (0) = Y0 > 0, z(a, 0) = z0(a) ≥ 0,

where the density z0 is assumed to be in L1(0,∞) with
∫ ∞
0

z0(a) da ≤ 1.
Let

(3) Z(t) =
∫ ∞

0

z(a, t) da.

Then Z(t) is the fraction of patches occupied at time t. We integrate
the z equation in (2) over all ages a to obtain

(4)
d

dt
Z(t) = Y (t)

∫ ∞

0

c(a)z(a, t) da − δZ(t) −
∫ ∞

0

ε(a)z(a, t) da.

Addition of the X, Y equations in (2) and the Z equation (4) yields
d/dt(X(t) + Y (t) + Z(t)) = 0, and hence,

(5) X(t) + Y (t) + Z(t) = 1, t > 0,

with initial data satisfying X0 + Y0 + Z0 = 1 where Z0 =
∫ ∞
0

z0(a) da.
Then the X equation in (2) can be simplified and solved

(6) X(t) = X0e
−(δ+γ)t +

δ

δ + γ
(1 − e−(δ+γ)t).
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Obviously, X(t) > 0 for all t > 0 with X0 > 0. Equations (5) and (6)
allow us to simplify the original system by eliminating the X equation.

The system (2) can be reformulated as a system of Volterra integral
equations. The following notation will be used later in the paper:

(7)

K0(a) = e
−δa−

∫ a

0
ε(s) ds

,

K1(a) = ε(a)K0(a) = −
(

d

da
K0(a) + δK0(a)

)
,

K2(a) = c(a)K0(a),

Ki =
∫ ∞

0

Ki(a) da, i = 0, 1, 2.

K0(a) is the probability of a patch remaining occupied at age a,
hereafter termed the age-specific survival probability of an occupied
patch. K2(a) is a product of the survival probability of a patch of
age a and the rate at which a habitable empty patch is colonized by an
occupied patch of age a. It is clear that K2(a) represents the production
of newly occupied patches, which were habitable but empty, produced
by a patch of occupancy age a. Hence, K2 gives the total production
of newly occupied patches by a (typical) patch during its entire life
of occupancy in a patch network consisting of only habitable patches.
This quantity is called the basic reproduction number and denoted by
R0.

For mathematical convenience we introduce the new variable, B(t), to
describe the rate at which an empty habitable patch becomes occupied
at time t by patches of all occupancy ages,

(8) B(t) =
∫ ∞

0

c(a)z(a, t) da.

Integrating the z equation in the system (2) along the characteristic
lines, t − a = constant, we get the following formula

(9) z(a, t) =
{

Y (t − a)B(t − a)K0(a) for a < t,
z0(a − t)K0(a)/K0(a − t) for a ≥ t

Substituting (6), (8) and (9) into the Y equation in (2), we get

(10)

d

dt
Y (t) =

δγ

δ + γ
− δY (t) − Y (t)B(t)

+
∫ t

0

Y (t − a)B(t − a)K1(a) da + F̃1(t),
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where

F̃1(t) =
∫ ∞

t

z0(a − t)
K1(a)

K0(a − t)
da + γe−(δ+γ)t

(
X0 − δ

δ + γ

)
.

Clearly F̃1(t) → 0 as t → ∞. Integrating equation (10) and changing
the order of integration, we obtain

(11)

Y (t) = Y0e
−δt +

∫ t

0

e−δ(t−s)

[
δγ

δ + γ
− Y (s)B(s)

+
∫ s

0

Y (s−a)B(s−a)K1(a) da + F̃1(s)
]

ds

=
∫ t

0

[
e−δ(t−s)

(
δγ

δ+γ
− Y (s)B(s)

)
+H(t−s)Y (s)B(s)

]
ds+F1(t)

where

H(t) = e−δt

∫ t

0

eδτK1(τ ) dτ,

F1(t) = Y0e
−δt +

∫ t

0

e−δ(t−s)F̃1(s) ds.

For the derivation of (11) we have used the following fact:∫ t

0

e−δ(t−s)

∫ s

0

Y (s − a)B(s − a)K1(a) da ds

=
∫ t

0

∫ s

0

e−δ(t−s)Y (u)B(u)K1(s − u) du ds

=
∫ t

0

∫ t

u

e−δ(t−s)Y (u)B(u)K1(s − u) ds du

=
∫ t

0

Y (u)B(u)e−δ(t−u)

∫ (t−u)

0

eδrK1(r) dr du.

Substitution of (9) into (3) and (8) yields

Z(t) =
∫ t

0

Y (s)B(s)K0(t − s) ds + F0(t)(12)
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and

B(t) =
∫ t

0

Y (s)B(s)K2(t − s) ds + F2(t),(13)

where

Fi(t) =
∫ ∞

t

z0(a − t)
Ki(a)

K0(a − t)
da, i = 0, 2.

Equations (11), (12) and (13) form a system of Volterra integral
equations which, together with the equation (6), is equivalent to the
original system (2). Notice from (12) that Z can be completely
determined by Y and B. Hence, for the discussion of existence and
uniqueness of the solutions, we only need to consider the following
system

(14)

Y (t) =
∫ t

0

[
e−δ(t−s)

(
δγ

δ+γ
−Y (s)B(s)

)
+H(t−s)Y (s)B(s)

]
ds+F1(t),

B(t) =
∫ t

0

Y (s)B(s)K2(t − s) ds + F2(t).

3. Analysis. In this section we provide analytic results on the
existence of positive solutions, equilibria and their stabilities, and
persistence of the metapopulation.

3.1 Existence of positive solutions. Set v(t) = (Y (t), B(t)).
Then system (14) can be written in the form

v(t) =
∫ t

0

κ(t − s)g(v(s)) ds + f(t),

f(t) = (F1(t), F2(t)) being a continuous function from [0,∞) to [0,∞)2,
κ being a locally integrable function from [0,∞) to the 2 × 2 matrix,

κ(t) =
(

γδe−δt/(δ + γ) H(t) − e−δt

0 K2(t)

)
,

and g : R2 → R2,
g(v) = (1, Y B).
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Obviously, f ∈ C([0,∞);R2), g ∈ C(R2,R2) and κ ∈ L1
loc([0,∞);

R2×2). Theorem 1.1 in Gripenberg et al. [1990, Section 12.1], now
provides us with a continuous solution defined on a maximal interval
such that the solution goes to infinity if this maximal interval is finite.

We proceed to show that Y (t) ≥ 0, B(t) ≥ 0 for all t > 0 for
nonnegative initial data. If there exists a t̄ > 0 such that Y (t̄) = 0
and Y (t) > 0, B(t) > 0 for all 0 < t < t̄, then, since X(t) > 0 for all
t > 0, and K0(a) > 0, K1(a) ≥ 0 for all a > 0 and i = 0, 1,

d

dt
Y (t̄) = γX(t̄) − δY (t̄) − Y (t̄)B(t̄) +

∫ t̄

0

Y (s)B(s)K1(t̄ − s) ds

+
∫ ∞

t̄

z0(a − t̄)
K1(a)

K0(a − t̄)
da

≥ γX(t̄) +
∫ ∞

t̄

z0(a − t̄)
K1(a)

K0(a − t̄)
da

> 0

This shows that Y (t) will never become negative as long as B(t) remains
positive. On the other hand, suppose that there exists a t̄ > 0 such
that B(t̄) = 0 and Y (t) > 0, B(t) > 0 for all 0 < t < t̄. Then, since
K2(a) > 0, F2(t) > 0,

B(t̄) =
∫ t̄

0

Y (s)B(s)K2(t̄ − s) ds + F2(t̄) > 0,

which contradicts our original supposition that B(t̄) = 0. It follows
that all variables remain nonnegative. This, together with the fact
that X +Y +Z = 1, implies that all solutions are bounded. Therefore,
we have found a solution of our original problem, which is defined for
all positive t because it does not go to infinity in finite time. Once we
have a continuous solution for system (14), we also have solutions to the
original system (2). It is possible to prove uniqueness of solutions and
continuous dependence of solutions on initial conditions by standard
methods, see Iannelli [1995] and Webb [1985]. Hence, the following
result holds.
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Result 1. The system (2) has a continuous nonnegative solution
for all t > 0 and, for all data X0 > 0, Y0 > 0, z0(a) ∈ L1

+[0,∞). The
solution is uniquely determined and continuously depends on the initial
data.

3.2 Equilibria and stability. Instead of using an argument of
the limiting system of the Volterra integral equations (11) (13), our
stability analysis will be based on the following system which is also
equivalent to the system (2):

(15)

d

dt
Y (t) = γ(1 − Y (t) − Z(t)) − δY (t) − Y (t)B(t)

+
∫ ∞

0

ε(a)z(a, t) da,

z(a, t) =

{
Y (t − a)B(t − a)K0(a) for a < t,

z0(a − t)K0(a)/K0(a − t) for a ≥ t

Z(t) =
∫ ∞

0

z(a, t) da

B(t) =
∫ ∞

0

c(a)z(a, t) da

We stress that the relevant dependent variables in this formulation are
Y and z; Z and B are convenient shorthand.

3.2.1 The induced semi-flow. From Result 1 we know that the system
(15) has a continuous solution for nonnegative data, which allows us to
consider the mapping

Θ : [0,∞) × U → U, U = (0,∞) × L1
+(0,∞),

defined by
Θ(t, (Y0, z0)) = (Y (t), z(·, t)),

where Y and z are the solutions to system (15) with initial data Y0 and
z0. It is easy to verify that Θ is a semi-flow, i.e., Θ satisfies

Θ(t + r, x) = Θ(t, Θ(r, x)) ∀ t, r ≥ 0, x ∈ U.
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U will be endowed with the metric induced by the norm

‖(y, f)‖ = |y| +
∫ ∞

0

|f(a)| da.

Similarly to Feng and Thieme [2000a] we can show that Θ is a contin-
uous semi-flow with a compact attracting set.

An equilibrium of (15) satisfies the equations

(16)

δ(1 − X∗) − γX∗ = 0,

γX∗ − δY ∗ − Y ∗B∗ +
∫ ∞

0

ε(a)z∗(a) da = 0,

z∗(a) = Y ∗B∗K0(a),
B∗ = Y ∗B∗K2,

K2 is given in (7). From the first equation we have X∗ = δ/(δ + γ).
An equilibrium is nontrivial if Z∗ =

∫ ∞
0

z∗(a) da 	= 0. The system (15)
always has the trivial equilibrium

(17) Y ∗
0 =

γ

δ + γ
, Z∗

0 = 0, B∗
0 = 0.

If Z∗ > 0, then B∗ 	= 0 (otherwise z∗ = 0) and the last equation in
(16) yields Y ∗ = 1/K2. Hence,

(18) Z∗ = 1 − X∗ − Y ∗ =
1
K2

(
γK2

δ + γ
− 1

)
.

It is easy to see that the unique nontrivial equilibrium

(19) Y ∗ =
1
K2

, Z∗ =
1
K2

(
γK2

δ + γ
− 1

)
, B∗ =

K2

K0
Z∗

exists if and only if Z∗ > 0, or

(20)
(

γ

δ + γ

)
K2 > 1.

Denote the quantity on the lefthand side by Rd, i.e.,

(21) Rd =
(

γ

δ + γ

)
K2 =

(
γ

δ + γ

) ∫ ∞

0

c(a)e−δa−
∫ a

0
ε(s) ds

da.
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Recall that K2 = R0 is the basic reproduction number and notice that
γ/(δ + γ) = 1 − X∗ is the fraction of habitable patches. Hence, Rd

is the reproduction number of the metapopulation in a patch network
where a fraction, i.e., δ/(δ + γ) of patches is destroyed. The threshold
condition Rd > 1 given by (20) indicates that, for persistence to be
possible, an occupied patch has to be able to replace itself during its
entire period of occupancy in a landscape where only a fraction, i.e.,
γ/(δ + γ) of patches is habitable.

3.2.2 Stability of equilibria. Our stability analysis follows the same
approach as in Feng and Thieme [2000a]. An equilibrium solution
x∗ = (Y ∗, z∗), i.e., x∗ = Θ(t, x∗), of the system (15) is called locally
stable if for every ε > 0 there exists some η > 0 such that

‖Θ(t, x) − x∗‖ < ε ∀ t ≥ 0, whenever ‖x − x∗‖ < η.

x∗ is locally asymptotically stable if x∗ is locally stable and if there
exists some η > 0 such that

Θ(t, x) −→ x∗, t −→ ∞; whenever ‖x − x∗‖ < η.

Moreover, if we let x̃(t) = x(t)− x∗ and denote by Θ′(t) the derivative
of Θ(t, x) in x evaluated at x = x∗, then the local stability of x∗ is
given by the stability of 0 for the linear expression

(22) x̃(t) = Θ′(t)x̃(0),

which is approached by studying solutions of the form

(23) x̃(t) = eλtx̄, x̄ 	= 0.

Similarly to the proof in Feng and Thieme [2000a] we can show that Θ′

satisfies the compactness condition of Corollary 4.3 in Thieme [1990]
and, hence, x∗ is locally asymptotically stable if all eigenvalues λ have
strictly negative real parts, while x∗ is unstable if at least one eigenvalue
has a strictly positive real part.

Let

Y (t) = Y ∗ + Ỹ (t), z(a, t) = z∗(a) + z̃(a, t), B(t) = B∗ + B̃(t).
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We will study the local stability of the equilibria of the following
linearized system, corresponding to (22),

(24)

Ỹ ′(t) = − γ (Ỹ (t) + Z̃(t)) − δỸ (t) − Y ∗B̃(t) − Ỹ (t)B∗

+
∫ ∞

0

ε(a)z̃(a, t) da,

z̃(a, t) = (Y ∗B̃(t − a) + Ỹ (t − a)B∗)K0(a),

B̃(t) =
∫ ∞

0

c(a)z̃(a, t) da,

where Y ∗ and B∗ are given in (16). Substituting nontrivial solutions
of the form (23) into (24) we get

(25)

λY = − γ (Y + Z) − δY − Y ∗B − Y B∗ + (Y ∗B + Y B∗)K̂1(λ),

Z = (Y ∗B + Y B∗)K̂0(λ),

B = (Y ∗B + Y B∗)K̂2(λ),

where φ̂(λ) is the Laplace transform of φ(a) defined by

φ̂(λ) =
∫ ∞

0

e−λaφ(a) da.

From the second equation in (25) we have Y ∗B + Y B∗ = Z/K̂0(λ).
Substituting this into the first equation in (25) yields

(26) Y =
K̂1(λ) − 1 − γK̂0(λ)

(λ + γ + δ)K̂0(λ)
Z = −Z.

For the last equality we have used the second equation in (7) to obtain
the following relation

K̂1(λ) = 1 − (δ + λ)K̂0(λ).

Noticing that, from the Z and B equations in (25),

B = Z
K̂2(λ)

K̂0(λ)
,
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and substituting this and (26) into the Z equation in (25), we get

Z = Z(Y ∗K̂2(λ) − B∗K̂0(λ)).

Since the exponential solution is nontrivial, Z 	= 0. By dividing the
equation above by Z, we obtain the characteristic equation

(27) 1 = Y ∗K̂2(λ) − B∗K̂0(λ).

An equilibrium with X∗, Y ∗ and Z∗ giving the fractions of patches
in the three stages is locally asymptotically stable if all roots of the
characteristic equation (27) have strictly negative real parts. The
equilibrium is unstable if there exists at least one root with a strictly
positive real part.

Result 2. The trivial equilibrium (17) is locally asymptotically
stable if Rd < 1 and unstable if Rd > 1.

Proof. At the trivial equilibrium the characteristic equation (27)
becomes

(28) 1 =
γ

δ + γ
K̂2(λ) def= G(λ).

Notice that G(0) = Rd and that G′(λ) < 0 for all −∞ < λ < ∞, i.e.,
G(λ) is a decreasing function. If Rd < 1, then, whenever the real part
of λ is positive, i.e., λ = α + iβ with α > 0, we have

|G(λ)| ≤ |G(α)| ≤ G(0) = Rd < 1.

Hence, all roots of (28) have negative real parts and the stability follows.
If Rd > 1, then, since G(0) = Rd > 1 and G(λ) → 0 as λ → ∞, there
exists a λ̄ > 0 such that G(λ̄) = 1. In this situation, instability follows.

Recall that a nontrivial equilibrium exists if and only if the repro-
duction number Rd = K2γ/(δ + γ) exceeds one. At the nontrivial
equilibrium, the characteristic equation takes the form

(29) 1 =
K̂2(λ)
K2

− (Rd − 1)
K̂0(λ)
K0

.
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Since Rd > 1 and K̂0(λ) > 0 for −∞ < λ < ∞, it is easy to show that
the equation (29) cannot have a positive real eigenvalue. However,
we cannot rule out the possibility of complex eigenvalues with positive
real parts when Rd > 1. In fact, Castillo-Chavez and Thieme [1993]
considered an HIV/AIDS model with a similar structure as the one
we considered here, and they proved that under certain conditions the
nontrivial equilibrium may lose its stability leading to the existence of
periodic solutions, see also Milner and Pugliese [1999]. While we have
not identified conditions for instability, we provide a stability result
for the case in which the patch extinction rate ε(a) is a nonincreasing
function, based on the logic that young (and small) populations are
more prone to demographic stochasticity. This assumption is satisfied
by the example used in the discussion section in which the extinction
rate of patches was assumed to be m1 for all patch ages less than some
threshold age and m2 thereafter with m1 > m2.

Result 3. Let Rd > 1. If the extinction rate ε(a) is a nonincreasing
function, then the unique nontrivial equilibrium (19) is locally asymp-
totically stable.

Proof. We need to show that all eigenvalues of (29) have negative
real parts. To simplify the characteristic equation we introduce the
following functions:

p(a) =
K2(a)
K2

, q(a) =
K0(a)
K0

.

Clearly, p(a) > 0, q(a) > 0 and
∫ ∞
0

p(a) da =
∫ ∞
0

q(a) da = 1. Then
(29) can be written as

(30) 1 = p̂(λ) − (Rd − 1) q̂ (λ).

Notice that p̂(0) = 1, p̂′(λ) ≤ 0 and q̂(λ) > 0 for 0 ≤ λ < ∞. It is
easy to see that (30) cannot have positive real roots when Rd > 1. Let
λ = x + iy denote a complex root of (30) with y 	= 0 (x and y are real
numbers). We remark that, whenever x + iy is an eigenvalue, x − iy
is also an eigenvalue. Separate (30) into real and imaginary parts as
follows:

(31) 1 =
∫ ∞

0

p(a)e−xa cos(ya) da − (Rd − 1)
∫ ∞

0

q(a)e−xa cos(ya) da
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and

(32)
∫ ∞

0

p(a)e−xa sin(ya) da = (Rd − 1)
∫ ∞

0

q(a)e−xa sin(ya) da.

We first show that (31) and (32) cannot have imaginary roots.
Suppose that iỹ, ỹ > 0, is a root. Then

(33) 1 =
∫ ∞

0

p(a) cos(ỹa) da − (Rd − 1)
∫ ∞

0

q(a) cos(ỹa) da

∫ ∞

0

p(a) sin(ỹa) da = (Rd − 1)
∫ ∞

0

q(a) sin(ỹa) da.

Since the first term on the righthand side of (33) is strictly less than 1,
the equation (33) yields

(34)
∫ ∞

0

q(a) cos(ỹa) da < 0.

Noticing that q(a) → 0 as a → ∞ we have∫ ∞

0

q(a) cos(ỹa) da = − 1
y

∫ ∞

0

q′(a) sin(ỹa) da.

Hence, from (34),

(35)
∫ ∞

0

q′(a) sin(ỹa) da > 0.

On the other hand, since ε(a) is nonincreasing on [0,∞],

q′′(a) > 0.

Using q′(a) = − ∫ ∞
a

q′′(t) dt we obtain∫ ∞

0

q′(a) sin(ỹa) da = −
∫ ∞

0

∫ ∞

a

q′′(t) sin(ỹa) dt da

= −
∫ ∞

0

∫ t

0

q′′(t) sin(ỹa) da dt

=
1
ỹ

∫ ∞

0

q′′(t)(cos(ỹt) − 1) dt

≤ 0.
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This contradicts (35). Therefore, (31) and (32) cannot have roots with
x = 0.

Next we show that (31) and (32) cannot have roots with x > 0 and
y > 0.

Claim. There exists an Rd > 1 such that, for all Rd ∈ (1,Rd), (31)
and (32) have no roots with x > 0 and y > 0.

Suppose that the claim is not true. Then there is a sequence {Rdj}∞j=1

with Rdj > 1 and Rdj → 1 as j → ∞, and corresponding sequences
{xj}∞j=1, {yj}∞j=1 with xj > 0 and yj > 0 satisfying (31) and (32).
From (31) and Rdj → 1,

∫ ∞

0

p(a)e−xja cos(yja) da −→ 1, j → ∞.

It follows that xj → 0, yj → 0. If we divide both sides of (32) (with x
and y being replaced by xj and yj) by yj and let j go to infinity, then
the lefthand side yields a positive constant,

∫ ∞
0

ap(a) da, whereas the
righthand side goes to 0. This leads to a contradiction and therefore
the claim is proved.

We now show that for any Rd > 1 (31) and (32) cannot have roots
with x > 0. Suppose that this is not true. Then, for some Rd > Rd,
(31) and (32) have a root with x > 0, y > 0. Since all roots for
Rd ∈ (1,Rd) satisfy x < 0, from the continuous dependence of roots
of the characteristic equation on the parameter Rd we know that the
curve of roots must cross the imaginary axis as Rd decreases to Rd.
The crossing cannot occur at y = ∞ because all integrals in (31) and
(32) tend to zero as y → ∞. This implies that (31) and (32) have an
imaginary root which is impossible as shown above. Therefore, (31) and
(32) cannot have roots with x > 0. The proof of Result 3 is completed.

All the stability results given above are local. We end this section by
providing a global stability result for the trivial equilibrium.
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Result 4. The trivial equilibrium of the system (14) is globally
asymptotically stable when Rd < 1.

Proof. Noticing that in the Y equation in (14)

H(t − s) − e−δ(t−s) = e−δ(t−s)

( ∫ t−s

0

eδτK1(τ ) dτ − 1
)

= −e
−δ(t−s)−

∫ t−s

0
ε(s) ds

< 0,

we obtain

Y (t) ≤ γδ

δ + γ

∫ t

0

e−δ(t−s) ds + F1(t).

Therefore, from limt→∞ F1(t) = 0, lim supt→∞ Y (t) ≤ γ/(δ + γ). From
the B equation in (14),

lim sup
t→∞

B(t) = lim sup
t→∞

∫ t

0

Y (t − u)B(t − u)K2(u) du

≤ γK2

δ + γ
lim sup

t→∞
B(t)

= Rd lim sup
t→∞

B(t).

This implies that lim supt→∞ B(t) = 0 as Rd < 1. Hence, B(t) → 0
as t → ∞, and consequently from (12), Z(t) → 0 as t → ∞. This
completes the proof.

3.3 Species persistence. Denote the rate of patch colonization
by C(t), i.e., C(t) = z(0, t) = Y (t)B(t). Let f∞ = lim supt→∞ f(t)
denote the limit of supremum (maximum) of a function f(t), and
let f∞ = lim inft→∞ f(t) denote the limit of minimum of f(t). The
metapopulation is called uniformly weakly persistent, if there exists
some small constant μ > 0 such that C∞ > μ for every ecologically non-
trivial solution of the model. The metapopulation is called uniformly
strongly persistent, if there exists some small constant μ > 0 such that
C∞ > μ for every ecologically nontrivial solution of the model. We dis-
cuss the persistence properties using the similar approach as in Feng
and Thieme [2000a]. We need the following lemmas.
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Lemma 1. The semi-flow Θ has a compact attracting set.

We call a set D in U an attracting set for the semi-flow if

Θ(t, x) −→ D, t → ∞, for all x ∈ U,

with the interpretation that for every set E, D ⊆ E ⊆ U , E relatively
open in U , we have some tE > 0 such that Θ(t, x) ∈ E for all t ≥ tE .

Proof of Lemma 1. First we notice from (5) and (6) that all solutions
of the system satisfy

(36) |Y (t)| < 1 for all t > 0.

Let c̄ denote the upper bound of c(a). Noticing also that Z0 ≤ 1 and
K0 ≤ 1/δ, from (8) and (9) we have∫ t

0

Y (t − a)B(t − a)K0(a) da ≤ c̄

δ
,(37)

and ∫ ∞

t

z0(a − t)
K0(a)

K0(a − t)
da ≤ e−δt.(38)

This implies that we can write the solution z, see (9), as

(39) z(a, t) = u(a, t) + v(a, t) with
∫ ∞

0

v(a, t) da −→ 0, t → ∞

and

(40) u(a, t) =
{

Y (t − a)B(t − a)K0(a) for a < t,
0 for a ≥ t.

Let D be the subset of U defined by D = {(Y (t), u(·, t))}, where u is
given in (39) and (Y (t), z(·, t)) = Θ(t, (Ỹ , z̃)) for (Ỹ , z̃) ∈ U , t > 0. Let
D = D, the closure of D. Then from (36) (39) we know that D ⊆ U is
a bounded attracting set for the semi-flow Θ.

Now we show that D is a compact set of U , or equivalently, D is a
conditionally compact set of U . According to a theorem in Dunford
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and Schwartz [1971, IV.8.19], D is conditionally compact if and only if
D is bounded and

(a) limh→0

∫ ∞
0

|u(a + h, t) − u(a, t)| da = 0 uniformly in t ≥ 0 and
uniformly for all u in D, and

(b) limA→∞
∫ ∞

A
u(a, t) da = 0 uniformly in t ≥ 0 and uniformly for

all u in D.

Obviously D is bounded. First we show that (a) holds. From (9) it
suffices to show that

(41) lim
h→0

∫ t

0

|Y (a + h)B(a + h) − Y (a)B(a)|K0(t − a) da = 0

uniformly in t ≥ 0 and uniformly for all u in D. Since Y (t) and
Z(t) are uniformly bounded in t ≥ 0 and uniformly for all solutions,
using (8) and the fact that c(a) is bounded we know that B(t) is also
uniformly bounded in t ≥ 0 and uniformly for all solutions. Then using
(14) it can be shown that Y (t) and B(t), and hence Y (t)B(t), are
uniformly continuous on [0,∞) and uniformly for all solutions. Notice
that ε(a) ≤ ε̄ for some constant ε̄ > 0 and that∫ t

0

K0(t − a) da ≤ 1
δ + ε̄

.

For any given μ > 0, we can choose η > 0 such that |Y (a + h)B(a +
h)−Y (a)B(a)| ≤ μ(δ+ ε̄) for all Y (a) and B(a) whenever h < η. Then∫ t

0

|Y (a + h)B(a + h) − Y (a)B(a)|K0(t − a) da ≤ μ,

whenever h < η uniformly for all u in D. Therefore, (41) holds and (a)
is proved.

Next we show that (b) holds. For any given μ > 0, we can choose Aμ

large enough so that
c̄

δ
e−δAµ/2 < μ.

Let A > Aμ. If t ≤ Aμ, then t < A and from (40) we get
∫ ∞

A
u(a, t) da =

0 for all u. If t > Aμ, then∫ ∞

A

u(a, t) da ≤
∫ ∞

Aµ

u(a, t) da =
∫ t

Aµ

Y (t − a)B(t − a)K0(a) da

≤ c̄

∫ ∞

Aµ

K0(a) da ≤ c̄

δ
e−δAµ < μ
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uniformly for all u. Thus, we have proved that
∫ ∞

A
u(a, t) da < μ for all

A > Aμ uniformly in t and uniformly for all u, and therefore (b) holds.

This completes the proof of Lemma 1.

Lemma 2 (Feng and Thieme [2000a]). Consider a Volterra integral
inequality

C(t) ≥ (C ∗ L)(t) + F (t), t > 0,

where F, L, C are nonnegative, F is continuous and not identically 0
and L is not 0 almost everywhere. Then there exists some λ ∈ R such
that

lim inf
t→∞ eλtC(t) > 0.

In particular, there exists some t0 > 0 such that B0 is strictly positive
on [t0,∞). If

L̂(0) =
∫ ∞

0

L(s) ds > 1,

λ can be chosen to be strictly negative.

Using Lemmas 1 and 2 we can prove the following result.

Result 5. Let Rd > 1. Then the species is uniformly strongly
persistent, i.e., there exists a small μ > 0 (independent of initial data)
such that

lim inf
t→∞ C(t) ≥ μ

for all solutions of the model with nonnegative initial data and Z0 > 0.

Proof. We first show that the species is uniformly weakly persistent.
Suppose it is not uniformly weakly persistent. Then we can find an
arbitrarily small μ > 0 such that

lim sup
t→∞

C(t) < μ

for an ecologically nontrivial solution of the model. Choose μ1 > 0
such that μ1 ≤ min{μ, μK0}. Then from equation (12) we have

lim sup
t→∞

Z(t) < lim sup
t→∞

C(t)K0 ≤ μ1.
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Noticing that Y (t) + Z(t) = 1− X(t) → γ/(δ + γ), as t → ∞, we have

lim inf
t→∞ Y (t) ≥

(
γ

δ + γ
− lim sup

t→∞
Z(t)

)
≥

(
γ

δ + γ
− μ1

)
.

Also notice that

lim sup
t→∞

Y (t) ≤ lim sup
t→∞

(Y (t) + Z(t)) =
γ

δ + γ
.

By the semi-flow property (Lemma 1), we can assume that∣∣∣∣Y (t) − γ

δ + γ

∣∣∣∣ < μ1, t ≥ 0.

Then

C(t) = Y (t)B(t) = Y (t)((C ∗ K2)(t) + F2(t))

≥
(

γ

δ + γ
− μ1

)
(C ∗ K2)(t) + F 2(t),

where F 2(t) = Y (t)F2(t) is nonnegative, continuous, and not identically
0. Clearly, (

γ

δ + γ
− μ1

) ∫ ∞

0

K2(s) ds = Rd − μ1K2 > 1

if μ1 > 0 is chosen small enough. By Lemma 2, with λ < 0, C(t) → ∞
as t → ∞, a contradiction.

We next use persistence theory to show that the species is uniformly
strongly persistent. Consider the solution semi-flow Θ on U . We define
a functional ρ : U → [0,∞) by

ρ(Y0, z0) = Y0

∫ ∞

0

c(a)z0(a) da,

i.e.,
ρ(Θ(t, (Y0, z0))) = z(0, t) = C(t).
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From the proof above we know that Θ is uniformly weakly ρ-persistent.
By Lemma 1, Θ has a compact attracting set A, the assumptions of
Theorem 2.6 in Thieme [2000] are satisfied, and Θ is uniformly strongly
ρ-persistent. This implies that solutions of the model with nonnegative
initial data and Z0 > 0 satisfies

lim inf
t→∞ C(t) ≥ μ,

for some small μ > 0. Hence, the species is uniformly strongly
persistent.

4. Discussion. In this paper we have generalized the model in
Keymer et al. [2000]. Specifically, we have introduced age structure into
the metapopulation model and studied the effects on metapopulation
persistence of colonization and extinction rates that vary with patch
age. Metapopulation models with similar types of age-dependence have
been studied previously only for the case when landscapes are static,
i.e., there is no patch destruction or creation, see Hastings and Wolin
[1989], Metz and Diekmann [1986]. We derived an expression for the re-
productive quantity Rd which determines whether the metapopulation
will go extinct or maintain itself in a patch network in which habitable
patches have a destruction rate δ. Of course if patches can be treated
as static, i.e., δ = 0, then Rd simplifies to the basic reproduction num-
ber R0 (= K2). In keeping with the findings of Keymer et al. [2000],
we have shown that the incorporation of age structure does not alter
the qualitative predictions of their model. Namely, the metapopula-
tion either goes extinct (if Rd < 1) or persists (if Rd > 1) for all age
distributions of colonization and all nonincreasing age distributions of
extinction.

To illustrate how information on age-related changes in colonization
and extinction can provide additional insight into predictions regarding
persistence, we considered the following example in which both c(a)
and ε(a) are simple step functions. We assumed that populations
were incapable of producing colonists until their local population had
attained some critical age (and corresponding size), referred to as
a∗. From a∗ onwards, colonization was assumed to occur at rate c̃.
Similarly, the extinction rate of patches was assumed to be m1 for all
patch ages less than some threshold age, â and m2 thereafter, based
on the logic that young populations are more prone to demographic
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FIGURE 1. (a) is a plot of the fraction of occupied patches Ẑ versus the
critical age of colonization a∗ and extinction rate of young patches m1. (b)
and (c) illustrate how the reproductive number Rd changes with a∗ and m1.

stochasticity. Consequently, we further assumed that m1 > m2. For
demonstration purposes, we only considered the case in which a∗ > â.
For these specific functions c(a) and ε(a), using the formula given in
(21) we obtain

Rd =
s̄c̃

1/τ + m2
(e−(1/τ+m2)a

∗−(m1−m2)â).

We adopted the parameters s̄ and τ̄ of Keymer et al. [2000], where
s̄ is the expected fraction of suitable habitat in the landscape, i.e.,
s̄ = γ/(δ + γ), and τ̄ is the expected patch life time, i.e., τ̄ = 1/δ.
We also adopted the notation Ẑ to denote the proportion of suitable
habitat occupied (p̂ in Keymer et al. [2000]), i.e., Ẑ = Z∗/s̄ where Z∗

is given in (18). From (18) we can derive a formula that relates Rd and
Ẑ. That is,

Ẑ = 1 − 1
Rd

.
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FIGURE 2. Plots of the fraction of occupied patches Ẑ versus the expected
fraction of suitable habitat s̄ and the expected patch life time τ̄ for different
values of the critical age of colonization a∗.

Figure 1 illustrates the joint importance of the age at which a patch
first produces propagules and the extinction force acting on young
populations. Lower extinction forces (m1) enable populations to persist
(in the region where Ẑ > 0 in Figure 1(a) or Rd > 1 in Figure 1(b))
even when the age of first propagule production (a∗) is delayed, Figure
1(c). This tradeoff is potentially of great importance to conservation
efforts, as it suggests that species capable of rapidly producing potential
colonists may fare better under environmental regimes that could
heighten extinction risks for small populations.

In Figure 2 we depict the effect of age structure on the proportion of
suitable habitat occupied. Clearly, early onset of propagule production,
see Figure 2(a), results in a wider range of habitat suitability and patch
lifetimes over which the metapopulation can persist. Note that, for any
given level of s̄, or τ̄ , it is possible to compute the persistence threshold
in terms of τ̄ , or s̄.

Our results suggest that future field studies of metapopulations would
do well to address age-related changes associated with colonization and
extinction processes. We have focused on simplistic age-dependent
dynamics; richer relationships undoubtedly exist and await clarification
by field biologists.
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