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Abstract

This article focuses on the study of an age-structure model for the disease transmission

dynamics of tuberculosis in populations that are subjected to a vaccination program. We

®rst show that the infection-free steady state is globally stable if the basic reproductive

number R0 is below one, and that an endemic steady state exists when the reproductive

number in the presence of vaccine is above one. We then apply the theoretical results to

vaccination policies to determine the optimal age or ages at which an individual should be

vaccinated. It is shown that the optimal strategies can be either one- or two-age strate-

gies. Ó 1998 Published by Elsevier Science Inc. All rights reserved.

1. Introduction

Tuberculosis (TB) is a communicable disease primarily spread by the air-
borne route. The risk that a person may become infected is strongly associated
with the probability of coming in contact with an actively infected individual as
well as the closeness and duration of the contact [18]. There is evidence show-
ing that TB case rates are highly age-dependent. Furthermore, it is also clear
that mixing plays a key role in TB transmission, as it does for most communi-
cable diseases. Approximately 100 million newborns and children received the
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Bacillus of Calmette and Gu�erin (BCG) vaccine in 1992 through the World
Health Organization [2]. More people alive today have been vaccinated with
BCG than with any other vaccine. However, despite its wide usage, the e�ec-
tiveness of BCG in preventing TB is controversial. Results of ®eld trials of
the vaccine have di�ered widely, some indicating protection rates as high as
70±80% while others show a strong evidence that the vaccine was completely
ine�ective [20]. Potential problems associated with the generalized use of the
BCG vaccine in some populations are closely related to the fact that vaccinated
individuals will test positive for TB. It, therefore, becomes nearly impossible to
be able to detect the prevalence of a disease in a population like the Argentineans
where most individuals are vaccinated.

Di�erent vaccination policies have been adopted in di�erent parts of the
world. In Argentina, BCG is given both at birth and at age 15. Children are
vaccinated between the ages of 12±14 in Queensland (Australia), and newborns
are vaccinated in Burma (see Refs. [16,17]). In practice, the application of a
vaccination policy is limited by many factors including the cost. Costs may
be increased by variability in age-dependent compliance (at birth, the disease
may be `caught' by children in the hospitals). Various policies have been estab-
lished in the past, and our objective here is to determine whether or not the pol-
icies being followed are `optimal' in some sense.

In order to test the value of a strategy, we consider an age-dependent vaccina-
tion rate w�a� into our age-structure TB model and calculate the corresponding
e�ect of this rate on the reproductive number for the vaccine-dependent model.
Since we are interested in vaccination policies, we ®rst study the e�ects of age-de-
pendent transmission rates on a model for TB dynamics in a population with or
without a vaccination program. The formulation of an age-structure model for
the transmission dynamics is straightforward; however, because those with TB
who are being treated and vaccinated individuals can become infected again,
it is not easy to study such a model. We denote the vaccine-dependent reproduc-
tive number by R�w� and obtain a formula for R�w�. We establish conditions for
the stability of the infection-free steady state distribution and for the existence of
an endemic steady state. We also show that, in the absence of vaccine, the infec-
tion-free steady state is globally stable if the basic reproductive number R0 (it is
shown to be larger than R�w�) is below one. We use the results on the dynamics
of our TB age-structure model to study the role of BCG on the epidemiological
age-structure of a population. We consider two optimization problems (see Refs.
[13,14]): reducing R�w� below a certain level R� at minimal costs or minimizing
the reproductive number R�w� with ®xed resources. Following the approach
used by Hadeler and M�uller (implicit in the work on optimal harvesting models
of Rorres and Fair [19]) we show that the optimal strategies for the two problems
above have the form `vaccinate at a single age' or `vaccinate at precisely two age
classes'. These are the policies followed in Argentina and many other countries.
A detailed account on TB epidemiology can be found in Ref. [4].
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This paper is organized as follows: Section 2 introduces an age-structure
model to study the dynamics of TB in the presence of a vaccine. The reproduc-
tive numbers R�w� and R0 are computed in Section 3. Some local stabilities of
the infection-free steady state are also studied in this section. In Section 4 we
study the global stability properties of this model. In Section 5 we apply our
results to vaccination policies and study the two optimization problems out-
lined above. Section 6 discusses our results and points to some future work.

2. The model

One of the typical features of TB is that the infectious agent has evolved a
symbiotic relationship with the human host; only about 10% of those infected
go on to develop the clinical disease. Most people will remain infected, which
may lead to long-lasting partial immunity both to further infection and to re-
activation of latent bacilli remaining from the original infection [18]. It is,
therefore, important to include a latency period into a TB model. Since relapse
(reactivation of a disease after an apparent cure) is one of the major risks to be
considered in etiological epidemiology of TB [8], it is also necessary to incor-
porate such a feature in a TB model. We, therefore, assume that treated indi-
viduals can become infected again with a lower transmission rate than
susceptibles. This may cause some di�culties in the analysis of the model as
will be seen later.

In order to formulate an age-structure model for the transmission of TB, we
need to introduce some notation. The population is divided into susceptible,
vaccinated, exposed, infectious, and treated classes, where s�t; a�; v�t; a�;
l�t; a�; i�t; a�, and j�t; a� denote the associated density functions with these re-
spective epidemiological age-structure classes. We assume that all newborns
are susceptible and that the mixing between individuals is proportional to their
age-dependent activity level. We also assume that an individual may become
infected only through contact with infectious individuals, that vaccination is
partially e�ective (i.e., vaccinated individuals can become infected again but
with a reduced transmission rate), that only susceptibles will be vaccinated
(susceptibles can be recognized since they will test negative and TB exposed in-
dividuals will test positive), and that the disease-induced death rate can be ne-
glected. The joint dynamics of the age-structure epidemiological classes are
governed by the following initial boundary value problem:

o
ot
� o

oa

� �
s�t; a� � ÿb�a�c�a�B�t�s�t; a� ÿ l�a�s�t; a� ÿ w�a�s�t; a�;

o
ot
� o

oa

� �
v�t; a� � w�a�s�t; a� ÿ l�a�v�t; a� ÿ db�a�c�a�B�t�v�t; a�;
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o
ot
� o

oa

� �
l�t; a� � b�a�c�a�B�t��s�t; a� � rj�t; a� � dv�t; a��

ÿ �k � l�a��l�t; a�;
o
ot
� o

oa

� �
i�t; a� � kl�t; a� ÿ �r � l�a��i�t; a�;

o
ot
� o

oa

� �
j�t; a� � ri�t; a� ÿ rb�a�c�a�B�t�j�t; a� ÿ l�a�j�t; a�;

B�t� �
Z1

0

i�t; a0�
n�t; a0� p�t; a; a

0� da0;

p�t; a; a0� � c�a0�n�t; a0�R1
0

c�u�n�t; u� du
;

s�t; 0� � K; v�t; 0� � l�t; 0� � i�t; 0� � j�t; 0� � 0;

s�0; a� � s0�a�; v�0; a� � v0�a�; l�0; a� � l0�a�;
i�0; a� � i0�a�; j�0; a� � j0�a�;
n�t; a� � s�t; a� � v�t; a� � l�t; a� � i�t; a� � j�t; a�:

K is the recruitment/birth rate (assumed constant); b�a� is the age-speci®c (av-
erage) probability of becoming infected through contact with infectious indi-
viduals, c�a� is the age-speci®c per-capita contact/activity rate and l�a� is the
age-speci®c per-capita natural death rate (all of these functions are assumed
to be continuous and to be zero beyond some maximum age); k is the per-cap-
ita rate at which individuals leave the latent class by becoming infectious and r
is the per-capita treatment rate; r and d are the reductions in risk due to prior
exposure to TB and vaccination, respectively, 06 r6 1, 06 d6 1; and p�t; a; a0�
gives the probability that an individual of age a has contact with an individual
of age a0 given that it has a contact with a member of the population. Here we
assume proportionate mixing as introduced earlier by many authors including
Hethcote and Yorke [15], Dietz and Schenzle [10], Anderson and May [1], and
Castillo-Chavez et al. [6,7]. Hence, using the approach of Busenberg and
Castillo-Chavez [3], we assume that p�t; a; a0� � p�t; a0� as explicitly described
above. The initial age distributions are assumed to be known and to be zero
beyond some maximum age. The model (1) is well-posed and the proof is sim-
ilar to that found in Ref. [7].

In the next section, we derive explicit expressions for R�w�, a quantity that
must exceed one for the disease to remain endemic (persist). In general, R�w� is
called the net reproductive number which measures the expected number of sec-
ondary infection produced by a `typical' infected individual during its entire±death
adjusted±period of infectiousness in an uninfected population.
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3. Calculation of R�w� and stability of the infection-free state

Notice that n�t; a� satis®es the following equations:

o
ot
� o

oa

� �
n�t; a� � ÿl�a�n�t; a�;

n�t; 0� � K;

n�0; a� � n0�a� � s0�a� � v0�a� � l0�a� � i0�a� � j0�a�:
Using the method of characteristic curves we can solve for n explicitly:

n�t; a� � n0�a� F�a�
F�aÿ t�H�aÿ t� � KF�a�H�t ÿ a�;

where

F�a� � exp ÿ
Za

0

l�s� ds

8<:
9=;;

H�s� � 1; s P 0; H�s� � 0; s < 0:

Hence,

n�t; a� ! KF�a�;

p�t; a� ! c�a�F�a�R1
0

c�b�F�b�db
�: p1�a�; t!1: �2�

Introducing the fractions

u�t; a� � s�t; a�
n�t; a� ; w�t; a� � v�t; a�

n�t; a� ; x�t; a� � l�t; a�
n�t; a� ;

y�t; a� � i�t; a�
n�t; a� ; z�t; a� � j�t; a�

n�t; a� ;

we get a simpli®ed system of Eq. (1):

o
ot
� o

oa

� �
u�t; a� � ÿb�a�c�a�B�t�u�t; a� ÿ w�a�u�t; a�;

o
ot
� o

oa

� �
w�t; a� � w�a�u�t; a� ÿ db�a�c�a�B�t�w�t; a�;

o
ot
� o

oa

� �
x�t; a� � b�a�c�a�B�t��u�t; a� � dw�t; a� � rz�t; a�� ÿ kx�t; a�;

o
ot
� o

oa

� �
y�t; a� � kx�t; a� ÿ ry�t; a�;

o
ot
� o

oa

� �
z�t; a� � ry�t; a� ÿ rb�a�c�a�B�t�z�t; a�;
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B�t� �
Z1

0

y�t; a�p�t; a� da;

p�t; a� � c�a�n�t; a�R1
0

c�u�n�t; u� du
;

u�t; 0� � 1; w�t; 0� � x�t; 0� � y�t; 0� � z�t; 0� � 0:

�3�

Let Fw�a� denote the probability that a susceptible individual has not been
vaccinated at age a. Then

Fw�a� � exp ÿ
Za

0

w�b� db

8<:
9=;:

The system (3) has the infection-free steady state

u�a� �Fw�a�; w�a� � 1ÿFw�a�; x�a� � y�a� � z�a� � 0;

n�a� � KF�a�: �4�
To study the local stability of the infection-free equilibrium, we linearize
Eq. (3) about Eq. (4) and consider exponential solutions of the form

x�t; a� � X �a�ekt; y�t; a� � Y �a�ekt; B�t� � B0ekt �O�e2kt�;
where

B0 �
Z1

0

Y �a�p1�a� da �5�

is a constant and p1�a� is as in Eq. (2). Then the linear parts of the x and y
equations in Eq. (3) are of the form

kX �a� � d

da
X �a� � b�a�c�a�B0Vw�a� ÿ kX �a�;

kY �a� � d

da
Y �a� � kX �a� ÿ rY �a�;

where

Vw�a� �Fw�a� � d�1ÿFw�a��: �6�
An expression for Y �a� can be obtained by solving the above system:

Y �a� � B0

Za
0

k
r ÿ k

b�a�c�a� e�k�k��aÿa� ÿ e�k�r��aÿa�ÿ �
Vw�a� da: �7�

From Eqs. (5) and (7) we get

B0 � B0

Z1
0

Za
0

k
r ÿ k

p1�a�b�a�c�a� e�k�k��aÿa�ÿ ÿe�k�r��aÿa��Vw�a� da da: �8�
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By changing the order of integration, introducing s � aÿ a, and dividing both
sides by B0 (since B0 6� 0) in Eq. (8) we get the characteristic equation

1 �
Z1

0

Z1
0

k
r ÿ k

p1�a� s�b�a�c�a� eÿ�k�k�s ÿ eÿ�k�r�sÿ �
Vw�a� ds da �: G�k�:

�9�
Now we are ready to de®ne the net reproductive number as R�w� � G�0�; i.e.,

R�w� �
Z1

0

Z1
0

k
r ÿ k

p1�a� s�b�a�c�a� eÿks ÿ eÿrs
ÿ �

Vw�a� ds da; �10�

and establish the following result.

Theorem 3.1. The infection-free steady-state (4) is locally asymptotically stable
(l.a.s.) if R�w� < 1 and unstable if R�w� > 1.

Proof. Noticing that

G0�k� < 0; lim
k!1

G�k� � 0; lim
k!ÿ1

G�k� � 1;
we know that Eq. (9) has a unique negative real solution k� if, and only if,
G�0� < 1, or R�w� < 1. Also, Eq. (9) has a unique positive (zero) real solution
if R�w� > 1 (R�w� � 1). To show that k� is the dominant real part of roots of
G�k�, we let k � x� iy be an arbitrary complex solution to Eq. (9). Note that

1 � G�k� � jG�x� iy�j6G�x�;
indicating that Rk6 k�. It follows that the infection-free steady state is l.a.s. if
R�w� < 1, and unstable if R�w� > 1.

This completes the proof.
A natural question is whether R�w� in Eq. (10) gives the net reproductive

number or it is only a threshold quantity. We show in Appendix A that such
de®ned R�w� is indeed the net reproductive number as introduced by Diekm-
ann and coworkers [9].

One may obtain a better understanding of the impact of vaccine by compar-
ing the net reproductive number R�w� with R0, which is called the basic repro-
ductive number (when a purely susceptible population is considered). We can
obtain an expression for R0 in a similar way as the derivation of R�w� by con-
sidering Eq. (1) without vaccination; i.e., by assuming that w�a� � 0 and ne-
glecting the v equation. It can be shown that R0 � R�0�; i.e.,

R0 �
Z1

0

Z1
0

k
r ÿ k

p1�a� s�b�a�c�a� eÿks ÿ eÿrs
ÿ �

ds da: �11�

Notice that Vw�a� < 1 for all a > 0. Hence,
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R�w�6R0: �12�
When the reproductive number is greater than one in the absence of vaccine;
i.e., R0 � R�0� > 1, vaccination programs can be used to reduce the reproduc-
tive number R�w� to values below one, thereby playing an important role in
controlling or eliminating the disease.

4. Global stability of the infection-free state and existence of an endemic state

In Section 3 we showed that the infection-free steady state is unstable when
R�w� > 1. In fact, a non-trivial steady state appears at the same time as shown
below.

Theorem 4.1. There exists an endemic steady state of Eq. (3) when R�w� > 1.

The method commonly used to ®nd an endemic steady state for age-struc-
ture models consists of obtaining explicit expressions for a time independent
solution of Eq. (3) �u��a�;w��a�; x��a�; y��a�; z��a�� that satis®es

d

da
u��a� � ÿb�a�c�a�B�u��a� ÿ w�a�u��a�;

d

da
w��a� � w�a�u��a� ÿ db�a�c�a�B�w��a�;

d

da
x��a� � b�a�c�a�B��u��a� � rz��a� � dw��a�� ÿ kx��a�;

d

da
y��a� � kx��a� ÿ ry��a�;

d

da
z��a� � ry��a� ÿ rb�a�c�a�B�z��a�;

�13�

where

B� �
Z1

0

y��a�p1�a� da: �14�

For models where individuals only move forward (r � 0) it is possible to solve
the steady state equations recurrently (e.g., one can solve for u��a� and w��a�
®rst, then solve for x��a� independently of y��a� and z��a�, and then for y��a�
and z��a�). We cannot follow this approach because there is a ¯ow going back
to the x class from the z class and, consequently, we are unable to obtain an
explicit expression for x��a�.
Proof of Theorem 3.1. Using the x� and y� equations in Eq. (13) we have that

x��a� �
Za

0

eÿk�aÿa�b�a�c�a�B�h�a;B�� da;
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y��a� �
Za

0

eÿr�aÿk�kx��k� dk;

where

h�a;B�� � u��a� � dw��a� � rz��a�;
and

u��a� �Fw�a�exp ÿ B�
Za

0

b�s�c�s� ds

8<:
9=;;

w��a� �
Za

0

exp ÿ B�
Za

s

db�k�c�k� dk

8<:
9=;w�s�u��s� ds;

z��a� �
Za

0

exp ÿ B�
Za

s

rb�k�c�k� dk

8<:
9=;ry��s� ds:

Note that h�a;B�� is the solution of an integral equation which involves only
the known functions. In fact, h�a;B�� satis®es the following Volterra integral
equation with parameter B�:

h�a;B�� � f �a;B�� �
Za

0

g�a; a;B��h�a;B�� da;

where f �a;B�� � u��a� � dw��a� which obviously contains only the known
functions, and

g�a; a;B�� � rB�b�a�c�a� rk
r ÿ k

Za
a

er�aÿs� ÿ ek�aÿs�ÿ �

exp ÿ B�
Za

s

rb�u�c�u� du

8<:
9=; ds:

Note that all the known functions are continuous for a 2 �0;A� and 0 < A61.
It can be shown that f 2 C��0;A� � R; R� is continuously di�erentiable with re-
spect to B� and that, for each B� 2 R, the function g��; �;B�� is a Volterra kernel
of continuous type on �0;A� (see Ref. [11]). Using the result of Gripenberg et al.
Ref. [11], Chapter 13, Section 2, Theorem 1.2) we know that, for each B� > 0,
there is a unique solution h�a;B�� de®ned on the maximal interval of existence
�0;Amax�, and that h�a;B�� depends continuously on B�. Moreover, since
u� w� x� y � z � 1, h�a;B�� is bounded. It follows from Ref. [11] (Chapter
12, Section 1) that Amax � 1.

Then from the x� and y� equations we have that
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y��a� �
Za

0

k
r ÿ k

�ek�aÿa� ÿ er�aÿa��b�a�c�a�B�h�a;B�� da: �15�

Substituting the above integral for y� in Eq. (14), dividing the resulting equa-
tion by B� (noticing that B� 6� 0), and letting s � aÿ a we obtain

1 �
Z1

0

Z1
0

k
r ÿ k

p1�a� s��eÿks ÿ eÿrs�b�a�c�a�h�a;B�� ds da �: H�B��:

�16�
We now see that an endemic steady state exists if Eq. (16) has a positive solu-
tion. After checking that h�a; 0� �Vw�a�, we get H�0� � R�w�; hence,
H�0� > 1. Since u� � w� � x� � y� � z� � 1 and u��a� > 0, we know that
y��a� < 1. Thus, we have from Eq. (15) thatZa

0

k
r ÿ k

�ek�aÿa� ÿ er�aÿa��b�a�c�a�B�h�a;B�� da < 1: �17�

Then, for any B� > 0, from Eqs. (16) and (17) we have

B�H�B�� �
Z1

0

p1�a�
Za

0

k
r ÿ k

�ek�aÿa� ÿ er�aÿa��b�a�c�a�B�h�a;B�� da da

<

Z1
0

p1�a� da � 1:

In particular, for B� � 1 we have H�1� < 1, but H�0� > 1. Since H�B�� is a con-
tinuous function of B�, we conclude that H�B�� � 1 has a positive solution ~B�

on �0; 1�. This solution may not be unique since H�B�� may not be monotone
(H�B�� depends on h�a;B�� which is de®ned implicitly). It follows that when
R�w� > 1, there exists an endemic steady state distribution which is given by
the unique solution of Eq. (13) corresponding to ~B�.

This ®nishes the proof.

Since R�w� > 1 is the only su�cient condition in which an endemic steady
state can exist and since we have shown only the local stability of the infec-
tion-free steady state when R�w� < 1, we may ask whether or not there exists
an endemic equilibrium when R�w� < 1. While we cannot rule out the possibil-
ity, the following result shows that there is no endemic steady state when
R0 < 1 (see Eqs. (11) and (12) for the relation between R�w� and R0).

Theorem 4.2. The infection-free equilibrium of Eq. (3) is globally asymptotically
stable if R0 < 1.
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Proof. Let I�t; a� denote the rate at which uninfected individuals of age a are
infected at time t. Then

I�t; a� � b�a�c�a�B�t��u�t; a� � dw�t; a� � rz�t; a��
6 b�a�c�a�B�t�; �18�

where B�t� is given in Eq. (3). Here we have used the fact that
u�t; a� � w�t; a� � z�t; a�6 1 and the assumption r6 1, d6 1. Integrating
Eq. (3) along characteristic lines we get

x�t; a� �
Za

0

eÿksI�t ÿ s; aÿ s� ds; a < t; �19�

y�t; a� � k
Za

0

eÿrsx�t ÿ s; aÿ s� ds; a < t:

Replacing x by the integral in Eq. (19) we get that, for a < t,

y�t; a� � k
Za

0

eÿrs

Zaÿs

0

eÿkkI�t ÿ sÿ k; aÿ sÿ k� dk ds

� k
Za

0

Zaÿs

0

eÿrseÿk�aÿsÿa�I�t ÿ a� a; a� da ds �a � aÿ sÿ k�

� k
Za

0

Zaÿa

0

eÿrseÿk�aÿsÿa�I�t ÿ a� a; a� ds da

� k
r ÿ k

Za
0

eÿk�aÿa� ÿ eÿr�aÿa�ÿ �
I�t ÿ a� a; a� da: �20�

Hence, by Eqs. (18) and (20) we obtain the inequality

I�t; a�6 b�a�c�a�
Z1

0

p�t; a� k
r ÿ k

Za
0

eÿk�aÿa� ÿ eÿr�aÿa�ÿ �
I�t ÿ a� a; a� da da: �21�

Let

W �a� � lim sup
t!1

I�t; a�:
Then taking the limit supreme when t!1 on both sides of Eq. (21) and using
Fatou's Lemma we get

W �a�6 b�a�c�a�
Z1

0

p1�a� k
r ÿ k

Za
0

eÿk�aÿa� ÿ eÿr�aÿa�ÿ �
W �a� da da; �22�
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where p1�a� is as in Eq. (2). Let C denote the constant

C �
Z1

0

p1�a� k
r ÿ k

Za
0

eÿk�aÿa� ÿ eÿr�aÿa�ÿ �
W �a� da da: �23�

Then Eq. (22) can be written as

W �a�6Cb�a�c�a�;
and thus Eq. (23) yields

C6C
Z1

0

Za
0

p1�a� k
r ÿ k

eÿk�aÿa� ÿ eÿr�aÿa�ÿ �
b�a�c�a� da da: �24�

If we change the order of integration in Eq. (24) and let s � aÿ a, then the
double integral is actually R0. Hence, Eq. (24) becomes

C6CR0;

and C � 0 if R0 < 1. It follows that if R0 < 1, then W �a� � 0 and, therefore,

lim sup
t!1

I�t; a� � 0:

From Eqs. (19) and (20) we see that

lim
t!1

x�t; a� � 0; lim
t!1

y�t; a� � 0:

It is then easy to show that

lim
t!1

u�t; a� �Fw�a�; lim
t!1

w�t; a� � 1

ÿFw�a�; lim
t!1

z�t; a� � 0:

This ®nishes the proof.

Theorem 4.2 shows that there is no endemic steady state for parameter val-
ues such that R0 < 1. However, it is not clear if an endemic steady state exists
in the case when R�w� < 1 but R0 > 1. It is possible a backwards bifurcation of
endemic steady states exists for some parameter values that satisfy
R�w� < 1 < R0 (see Refs. [5,12]).

5. Optimal vaccination strategies

Generally speaking, the e�ect of subjecting a population to a vaccination
program is to reduce its reproductive number and to increase the average
age of ®rst infection. Ideally, in a vaccination program, one would like to elim-
inate or eradicate a disease, but vaccinations often can only prevent major ep-
idemic outbreaks. Since elimination is usually highly unlikely, we often try to
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®nd ways of reducing the prevalence or incidence of a particular disease. By
lowering the reproductive number, we reduce the prevalence and incidence of
a disease. In Ref. [10], a simpler formula was derived which can be used to de-
termine the function w�a� needed to reduce R�w� below 1. Their approximation
was constructed for diseases where the length of the infectious period is short.
TB has a long and variable period of infectiousness. Therefore, we consider in-
stead the approach used by Hadeler and M�uller [14] in the case of HIV, and
look at the e�ectiveness of vaccination policies that are driven by reductions
of the reproductive number.

Consider the functional de®ned by

F �w� � R0 ÿR�w�:
Then

F �w� �
Z1

0

Z1
0

b�a�c�a�p�a� s� k
r ÿ k

�eÿks ÿ eÿrs��1ÿVw�a�� ds da; �25�

where Vw�a� is as in Eq. (6). Note that F �w� gives a measure of the reduction
in the reproductive number by the vaccination strategy w.

We next formulate two optimization problems by considering costs that are
associated with the vaccination strategies. Let sw�a� denote the density function
of susceptibles describing the steady demographic state in the absence of dis-
ease, then

sw�a� � KF�a�Fw�a�:
Let C�w� be the total cost associated with the vaccination strategy w, and as-
sume that C�w� depends linearly on the number of vaccinations (see Ref.
[14]). Then we can write

C�w� �
Z1

0

j�a�w�a�sw�a� da;

where j�a� is a positive function representing the costs associated with one vac-
cination at age a. For future use, we note that

C�w� �
Z1

0

Kj�a�w�a�F�a�exp ÿ
Za

0

w�s� ds

8<:
9=; da: �26�

Two optimization problems can be de®ned as follows. Let R� and C� be two
constants.

(I) Find a vaccination strategy w�a� that minimizes C�w� constrained by
R�w�6R�.

(II) Find a vaccination strategy w�a� that minimizes R�w� constrained by
C�w�6C�.
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The di�culty associated with these optimization problems is due to the fact
that C�w� and F �w� are non-linear functionals of w. Hadeler and M�uller [14]
showed how to overcome this di�culty. In order to make both C�w� and
F �w� linear functionals we apply the transformation

/�a� � ÿ d

da
exp ÿ

Za
0

w�s� ds

8<:
9=; � w�a�exp ÿ

Za
0

w�s� ds

8<:
9=;:

Denote �F �/� � F �w�; �C�/� � C�w�. Then, seeing that

1ÿVw�a� � �1ÿ d��1ÿFw�a�� � �1ÿ d�
Za

0

/�s� ds

(see Eq. (6)), and also noting that

�F �/� �
Z1

0

Z1
0

b�a�c�a�p�a� s� k
r ÿ k

�eÿks ÿ eÿrs��1ÿ d�
Za

0

/�s� ds ds da

�
Z1

0

Z1
a

Z1
0

�1ÿ d�b�a�c�a�p1�a� s� k
r ÿ k

�eÿks ÿ eÿrs� ds da

8<:
9=;

/�a� da

(see Eq. (25)), we arrive at

�F �/� �
Z1

0

K�a�/�a� da;

�C�/� �
Z1

0

B�a�/�a� da

(see also Eq. (26)), where

K�a� �
Z1

a

Z1
0

�1ÿ d�b�a�c�a�p1�a� s� k
r ÿ k

�eÿks ÿ eÿrs� ds da;

B�a� � Kj�a�F�a�:
�27�

Hence, we have replaced two non-linear functionals with the linear functionals
given by �F �/� and �C�/�. If we let

Q�/� �
Z1

0

/�a� da;

then it is easy to see that Q�/�6 1.
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Letting q � R0 ÿR� we are able to replace (I) by the following linear opti-
mization problem:

minimize �C�/�
subject to f �/�6 0;

/P 0;
�28�

where

f �/� � f1�/�
f2�/�

� �
� qÿ �F �/�

Q�/� ÿ 1

 !
;

and f �/�6 0 is equivalent to fi�/�6 0 �i � 1; 2�. After using (formally) the
Saddle Point Theorem of Kuhn and Tucker for the convex optimization prob-
lem (see Ref. [21]) we can show that Eq. (28) is mathematically equivalent to
(P1) in Ref. [14]. Hence, using the same arguments we arrive at the following
conclusion.

Result 5.1. There are two possible optimal vaccination strategies in (I):
(i) one-age strategy: vaccinate the susceptible population at exactly age A;
(ii) two-age strategy: vaccinate part of the susceptible population at age A1

and the remaining susceptibles at a later age A2.

For the two vaccination strategies, the optimal ages can be calculated in the
following way: Note that K�a� (see Eq. (27)) is a strictly decreasing function
with K�0� � R0 > q and K�a� ! 0 as a!1. Hence, we can ®nd A� > 0 such
that K�A�� � q. Let A be the minimum of the quotient B�a�=K�a�. (See Ref. [14]
for discussions about the existence of A.) If A 2 �0;A��, then it gives an optimal
age for the one-age strategy. If A 2 �A�;1�, then the optimal two-age strategy
is found by minimizing the expression C�A1;A2� on A1 2 �0;A�� and
A2 2 �A�;1�, where

C�A1;A2� � qÿ K�A2�
K�A1� ÿ K�A2�B�A1� � K�A1� ÿ q

K�A1� ÿ K�A2�B�A2�:
For (II), a similar conclusion to Result 5.1 can be obtained; i.e., the optimal

vaccination strategy is either one- or two-age, and the optimal ages can be de-
termined.

6. Discussion

In this paper we introduced an age-structure model to study the dynamics of
TB and problems related to optimal vaccination strategies. First we calculated
the reproductive numbers and studied the disease transmission dynamics with
and without vaccine. We proved the global stability of the infection-free steady
state for R0 < 1. A threshold condition is given by R�w� � 1 in the sense that
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the infection-free state is l.a.s if R�w� < 1 and unstable if R�w� > 1. Also an
endemic steady state exists when R�w� > 1. We have not shown whether or
not endemic steady states exist for parameters that satisfy R�w� < 1 < R0. This
may suggest the existence of a backwards bifurcation of nontrivial equilibria
for some parameter values in that range. We then studied cost-related optimal
vaccination strategy problems and found that the optimal strategies have the
form of one- or two-age strategies which can be found by minimizing functions
of one or two variables. We did not include the infection age dependent infect-
ivity which seems to play a role in the transmission of TB.

In Argentina, individuals are vaccinated for TB at birth and at age 15 years.
Are these in agreement with the optimal vaccination strategies computed here?
These questions cannot be answered until information on R0, the cost function,
and, more importantly, w�a�, are available. Our results agree with those of
Rorres and Fair [19], but this is not surprising since `harvesting' is mathemat-
ically equivalent to `vaccinating'.

We have followed the approach of Hadeler and M�uller [13,14] when formu-
lating the optimization problems and ®nding vaccination strategies. Neverthe-
less, our studies of the model that incorporates several characteristics of TB
help understand the role that key epidemiological parameters play in the main-
tenance of the disease ± including the role of the parameters associated with re-
lapses, imperfect vaccines, and long periods of latency. More speci®cally,
Hadeler and M�uller's model has three variables which are susceptibles, vacci-
nated, and infected. They identify recovered with vaccinated. In our model vac-
cinated and treated individuals may have di�erent infection rates. This is one of
the important features of TB since the protection rates of TB vaccines against
TB reinfection seem to be much higher than that of treatments. Such models
allow one to address questions associated with the e�ectiveness of TB vaccines
(such as the BCG vaccine) and the impact of relapse of the disease on the dy-
namics of TB within age-structure populations. Also our model includes a la-
tent class which seems important in modeling TB transmission dynamics since
TB has relatively long periods of latency and only a small proportion of latents
will become infectious.

The incorporation of these realistic features of TB into our model has caused
some di�culties in the analysis, especially in proving the global stability result
and the existence of an endemic steady state. For example, allowing treated in-
dividuals to return to the infected class due to reactivation of the disease makes
it impossible to solve the steady state equations recurrently (see Section 4)
which is the method commonly used for age-structure models. In fact, in order
to show the existence of an endemic steady state of Eq. (3), it is necessary to
show ®rst the existence, uniqueness, and continuity (with respect to a parame-
ter) of the solution of a Volterra integral equation with a parameter.

On the other hand Hadeler and M�uller's model is a homogeneous system,
and they show the linear stability of the uninfected state which describes expo-
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nential growth of the total population whereas the proportions of age remain
constant. This seems to be more general than results where the uninfected state
is time independent which is the case in our model (we do not have a homoge-
neous system). Our contribution consists of looking at a model where individ-
uals are allowed to `return' to previously visited classes, studying some global
stability properties of this age-structure model, proving the existence of an en-
demic steady state when the commonly used method does not apply, and show-
ing how to compute the optimal vaccination strategies in such situations.
Clearly, a one- or two-age optimal vaccination strategy may become the rule
in these types of models.
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Appendix A

In this appendix we provide an alternative calculation of the net reproduc-
tive number R�w� de®ned in Eq. (10) using the approach developed by Diek-
mann and coworkers [9].

Diekmann's notation lets S�a� denote the density function of susceptibles
used to describe the steady demographic state in the absence of disease. Diek-
mann de®nes A�s; a; a� as the expected infectivity of an individual infected s
units of time ago while at age a towards an uninfected individual of age a while
the population is in a steady demographic state. The function A�s; a; a� com-
bines information on the probability (per unit of time) that contacts between
certain ages take place and the probability that, given a contact, the disease
agent is actually transmitted. Under the special assumption of proportionate-
mixing A�s; a; a� can be written in the form A�s; a; a� � f �a�g�s; a�: Under these
assumptions Diekmann gives the following formula for the reproductive num-
ber R:

R �
Z1

0

Z1
0

f �a�g�s; a�S�a� ds da:
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In our model the population (in a steady demographic state) consists of both
susceptibles s�a� and vaccinated individuals v�a� which may have a reduced in-
fection rate (0 < d < 1). In this case the above formula can be generalized to

R �
Z1

0

Z1
0

f �a�g�s; a� s�a� � dv�a�� � ds da: �A:1�

To make use of Eq. (A.1) to calculate the reproductive number for system (1)
with the vaccination function w, we consider a demographic steady state
�s�a�; v�a�; 0; 0; 0� of system (1) with every one uninfected and temporarily ig-
nore the fact that s�a� and v�a� decrease due to the infection process (see
Ref. [9]). For simplicity we ®rst consider the case l�a� � l (a constant). The
results hold also for non-constant death rate l�a�. Let

Fw�a� � eÿU�a�; U�a� �
Za

0

w�u� du:

Clearly, we have that

s�a� � KeÿlaFw�a�; v�a� � Keÿla�1ÿFw�a��: �A:2�
We need to compute the remaining elements required in Eq. (A.1). We ob-

serve that

p1�a� � c�a�n�a�R1
0

c�u�n�u� du
;

where n�a� denotes the density function of the total population at the steady
state. Let c�s; a� be the probability that an individual of age a� s who was in-
fected s time units ago is in class i, and let u 2 �0; s� denote the probability that
an individual of age a� s who was infected s time units ago is in class l at time
u after infection. Furthermore, we observe that the probability of remaining in
l class times the probability of being still alive at age a� u, given that the in-
dividual was alive at age a, is

eÿku eÿl�a�u�

eÿla
� eÿ�l�k�u;

and we observe that the density function for entering class i is therefore given
by

keÿ�l�k�u: �A:3�
In order to be in class i with infection age s one should

(i) have entered i at some time u 2 �0; s�,
(ii) have remained in i in the interval �u; s�.

The probability that (ii) holds is

eÿ�l�r��sÿu�: �A:4�
From Eqs. (A.3) and (A.4) we have
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c�s; a� �
Zs

0

keÿ�l�k�ueÿ�r�l��sÿu� du � k
r ÿ k

�eÿks ÿ eÿrs�eÿls:

(Note that c�s; a� > 0 for all r > 0; k > 0.) Hence using the de®nition of
A�s; a; a� we have

A�s; a; a� � b�a�c�a�p1�a� s� c�s; a�
n�a� s�

� b�a�c�a�p1�a� s� k
r ÿ k

�eÿks ÿ eÿrs�ela 1

K
�: f �a�g�s; a�;

�A:5�

where

f �a� � b�a�c�a�;
g�s; a� � p1�a� s� k

r ÿ k
�eÿks ÿ eÿrs�ela 1

K
:

Using Eqs. (A.1) and (A.2) we get

R �
Z1

0

Z1
0

f �a�g�s; a� s�a� � dv�a�� � ds da

�
Z1

0

Z1
0

b�a�c�a�p1�a� s� k
r ÿ k

�eÿks ÿ eÿrs�Vw�a� ds da;

�A:6�

where

Vw�a� �Fw�a� � d�1ÿFw�a��:
The reproductive number R in Eq. (A.6) is exactly the same as R�w� de®ned in
Eq. (10).
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