Monday, October 20, 2025 10:26 AM

Study Guide Questions to KNOW
1.2, 1.4.9, 1.4.9, 1.4.10, 2.1.4, 2.2, 3.2, 3.3, 4.3, 5.2, 5.3,
6.1.4, 6.3, 7.2.2, 7.2.3, 7.4, 7.6, 7.7, 7.9, 7.10, 7.14

Coneavity of a Function

Suppose f''(x) exists on an open interval, I. Then

(a) If f''(x) 70 for all $x \in I$, then f(x) is concave up on I.

(b) If f''(x) (0 for all $x \in I$, then f(x) is concave down on I.

Concave down like frown

 $\frac{E \times 1}{f(x)} = x^3 - x$ is concave up or down.

$$f'(x) = 3x^2 - 1$$

Next chraw a # line w/ the x-values found when f''(x)=0.

$$f''(-1)=6(-1)=-$$

$$f'''(1)=6(1)=+$$

Concave Up: (0,∞)

Concave down: (-00,0)

Inflections Pts: Pts where concavity changes.

Or I He ats on the curve where f"(x) = 0 or DNE.

Intlections Pts. FTS

1) Find the pts on the curve where f"(x) = 0 or DNE.

2) Test whether the concavity changes at these pts.

where cis a pt found in O.

Ex 2: Find the inflection pt(s) of $f(x) = \frac{3}{5}x^5 - x^4$ if they exists.

Step 1: Find
$$f''(x) = 0$$
.
 $f'(x) = \frac{3}{5} (5) x^{4} - 4x^{3}$
 $= 3x^{4} - 4x^{3}$
 $f''(x) = 3(4)x^{3} - 4(3)x^{2}$
 $= 12x^{3} - 12x^{2} = 0$
 $12x^{2}(x-1) = 0$
 $12x^{2} = 0$ $x-1=0$
 $x=0$ $x=1$

Step 2: Number Line.

i.e.

$$\begin{array}{c|c}
-1 & 1/2 & 2 \\
\hline
 & 0 & 1
\end{array}$$

$$f''(x) = |2x^{2}(x-1)|$$

$$f''(-1) = |2(-1)^{2}(-1-1) = + \cdot -$$

$$f''(\frac{1}{2}) = |2(\frac{1}{2})^{2}(\frac{1}{2}-1) = + \cdot -$$

$$f''(2) = |2(2)^{2}(2-1) = + \cdot -$$

By det, inflection pt only at x=1.

How to figure out the shape of a graph

How to figure out the snape or a graph
$$Ex 3$$
: Let $y = 3x^4 - 4x^3 - 6x^2 + 12x + 1$
 $y' = 12x^3 - 12x^2 - 12x + 12$

Find when
$$y' = 0$$
.
 $12x^3 - 12x^2 - 12x + 12 = 0$
 $12(x^3 - x^2 - x + 1) = 0$
 $12[x^2(x-1) - 1(x-1)] = 0$
 $12[x^2 - 1](x-1) = 0$
 $12[x^2 - 1](x+1)(x-1) = 0$
 $12[x - 1](x+1)(x-1) = 0$

Find when
$$y''=0$$
.
 $y' = 12x^3 - 12x^2 - 12x + 12$
 $y'' = 36x^2 - 24x - 12 = 0$
 $= 12[3x^2 - 2x - 1] = 0$
 $12[3x^2 + x - 3x - 1] = 0$
 $12[x(3x+1) - 1(3x+1)] = 0$
 $12(x-1)(3x+1) = 0$
 $x-1=0$ $3x+1=0$
 $x=1$ $x=-1/3$

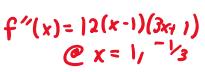
$$y''=0$$
 $ex=1,-\frac{1}{3}$

Create a Table.

X		-1		-1/3		l	
f'(x)	-2	0	+ (2/3)	+	+	0	+ 2
1"(x)	t	+	+	0) 0	0	+ 2

$$f' = 12(x-1)^{2}(x+1) = 0$$
 $0 = 1/-1$

T (X)	-2	~	<i>←</i> 2/3)		Щ		Z	,
f "(x)	+2	+	+	0	0	0	+ 2	
Conclusion		local min		int pt		inf pt		



$$\begin{array}{c|c} - & + \\ \hline - & -2/3 \\ \hline - & & | \end{array}$$

$$f''(-2) = 12(-2-1)(3(-2)+1)$$

$$= + \cdot - \cdot -$$

$$f''(0) = 12(-1)(1)$$