MA 165 LESSONS 23+24: OPTIMIZATION

Optimization Problems: Often this includes finding the maximum or minimum value of some function.

- e.g. The minimum time to make a certain journey,
- e.g. The minimum cost for constructing some object,
- e.g. The maximum profit to gain for a business, and so on.

How do we solve an optimization problem?

- Determine a function (**known as objective function**) that we need to maximize or minimize.
- Determine if there are some constraints on the variables. (The equations that describe the constraints are called **the constraint equations**.)
 - o If there are constraint equations, rewrite the **objective function** as a function of only one variable.
- Then we can solve for absolute maximum or minimum like we did before. o Using either the First Derivative Test or Second Derivative Test.

Recipe for Solving an Optimization Problem

- **Step 1:** Identify what quantity you are trying to optimize.
- **Step 2:** Draw a picture (if applicable), corresponding to the problem, and label it with your variables.
- **Step 3:** Express the variable to be optimized as a function of the variables you used in Step 2.
- **Step 4:** Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.
- Step 5: Identify the domain for the function you found in Step 4.
- Step 6: Find the absolute extrema of the variable to be optimized on this domain.
- **Step 7:** Reread the question and be sure you have answered exactly what was asked.

Example 1: A carpenter is building a rectangular room with a fixed perimeter of 54 feet. What are the dimensions of the largest room that can be built? What is its area?	
Step 1: Identify what quantity you are trying to optimize.	
Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.	
Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.	
Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.	
Step 5: Identify the domain for the function you found in Step 4.	
Step 6: Find the absolute extrema of the variable to be optimized on this domain.	

Example 2: A rancher plans to make four identical and adjacent rectangular pens
against a barn, each with an area of 25 m^2 . What are the dimensions of each pen
that minimize the amount of fence that must be used?

Step 1: Identify what quantity you are trying to optimize.

Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Identify the domain for the function you found in Step 4.

Step 6: Find the absolute extrema of the variable to be optimized on this domain.

feet. Find the dimensions of the box that can be made with the least amount of material.
Step 1: Identify what quantity you are trying to optimize.
Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.
Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.
Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.
Step 5: Identify the domain for the function you found in Step 4.
Step 6: Find the absolute extrema of the variable to be optimized on this domain.

Example 3: An open-top box with a square base is to have a volume of 8 cubic

Example 4: Find the point on the graph of $f(x) = 2x + 4$ that is the closest to the point $(1,3)$.
Step 1: Identify what quantity you are trying to optimize.
Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.
Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.
Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.
Step 5: Identify the domain for the function you found in Step 4.
Step 6: Find the absolute extrema of the variable to be optimized on this domain.

Example 5: A piece of wire of length 40 is cut, and the resulting two pieces are formed to make a circle and a square. Where should the wire be cut to minimize the combined area of the circle and the square?

Step 1: Identify what quantity you are trying to optimize.

Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Identify the domain for the function you found in Step 4.

Step 6: Find the absolute extrema of the variable to be optimized on this domain.

Example 6: From a thin piece of cardboard 20 in by 20 in, square corners are cut out so that the sides can be folded up to make a box. What dimensions will yield a box of maximum volume? What is the maximum volume?

Step 1: Identify what quantity you are trying to optimize.

Step 2: Draw a picture (if applicable), corresponding to the problem, and label it with your variables.

Step 3: Express the variable to be optimized as a function of the variables you used in Step 2.

Step 4: Find relations among the variables from Step 2 and express the variable to be optimized a function of just one of the variables from Step 2.

Step 5: Identify the domain for the function you found in Step 4.

Step 6: Find the absolute extrema of the variable to be optimized on this domain.